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Abstract 

 

The purpose of this study is to investigate the techno-economic feasibility of operating an 

aquaponics farm in South Africa. Aquaculture is the fastest-growing type of food production 

in the world, yet South Africa is lagging behind international efforts to boost the industry.  

An independent academic feasibility study on small scale aquaponics farms in South Africa 

has not been performed before, causing current and prospective farmers to be uncertain 

about the prospects of the venture. 

The study is approached by investigating the aquaculture and aquaponics industry and 

gathering the relevant information. By investigating other models used to represent 

aquaculture or aquaponics systems, the required information is gathered in order to build a 

unique model for the purpose of determining the feasibility of the case study farms.  

The model is modified to represent each of the case study farms. The results show that the 

majority of the farms are not economically viable. A sensitivity analysis provides some 

insight on how varying certain parameters can affect the performance of the systems. 

Using the information gathered in the case studies and research, a near-ideal system is 

specified in order to establish whether this improved system can be viable whilst taking into 

account the constraints placed upon aquaponics ventures in South Africa.  

The study suggests some recommendations for current and prospective farmers that might 

improve their chances of succeeding with an aquaponics venture.  

The study finds that currently aquaponics in South Africa is hindered by a number of 

constraints that result in it being a high-risk venture with meagre returns on investment. 

However, the study shows that if an aquaponics system were designed, built and managed 

correctly, it could theoretically be an economically viable venture.  

The investigation has, in a logical method, provided insight into the viability of operating an 

aquaponics farm in South Africa. 
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Opsomming 

 

Die doel van hierdie studie is om die lewensvatbaarheid van akwaponika in Suid-Afrika te 

ondersoek. Akwakultuur is die tipe voedselproduksie wat die vinnigste groei in die wêreld, 

maar Suid-Afrika hou nie tred met die internasionale poging om akwakultuur te ontwikkel nie.  

„n Onafhanklike lewensvatbaarheid studie oor kleinskaal  akwaponika plase in Suid-Afrika is 

nog nooit onderneem nie. Dit veroorsaak dat huidige en voornemende akwaponika boere 

onseker is oor die uitkomste van hulle ondernemings.  

Die studie is benader deur die akwaponika en akwakultuur bedrywe te ondersoek, en die 

relevante inligting te versamel. Deur ander modelle wat gebruik word om akwakultuur en 

akwaponika sisteme te verteenwoordig te ondersoek, is die nodige inligting versamel om „n 

unieke model te bou wat gebruik word om die lewensvatbaarheid van die gevallestudies te 

bepaal. 

Die model is aangepas om elkeen van die gevallestudies te verteenwoordig. Die resultate 

wys dat die meerderheid van die gevallestudie plase nie ekonomies lewensvatbaar is nie. „n 

Sensitiwiteitsanaliese gee insig oor hoe spesifieke parameters die prestasie van die sisteme 

affekteer.  

Deur die inligting wat versamel is tydens die gevallestudies en navorsing te gebruik, kan „n 

sisteem gespesifiseer word om te bevestig of hierdie verbeterde sisteem lewensvatbaar kan 

wees terwyl dit die beperkings waaronder akwaponika sisteme in Suid Afrika geplaas word 

in ag neem.  

Die studie verskaf „n paar aanbevelings vir huidige en voornemende boere. Hierdie 

aanbevelings kan die kanse van sukses van die ondernemings verbeter.  

Die studie het gevind dat akwaponika in Suid-Afrika deur „n aantal beperkings benadeel 

word, wat lei tot „n situasie waar dit „n hoë-risiko onderneming is, met lae opbrengste op die 

belegging. Maar, die studie wys ook dat as „n sisteem korrek ontwerp, bou en bestuur word, 

dit teoreties „n ekonomies lewensvatbare onderneming kan wees.  

Die studie het op „n logiese wyse insig gegee oor die haalbaarheid van akwaponika in Suid-

Afrika. 
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Glossary 

 

Aquaculture: The cultivation of aquatic organisms. 

Aquaponics: The symbiotic cultivation of plants grown using hydroponics, and aquatic                                                                                                   

organisms in a recirculating environment. 

Hydroponic: The cultivation of plants in a nutrient solution as opposed to soil. 

Oreochromis mossambicus: A species of tilapia indigenous to southern Africa.  

Recirculating aquaculture system: An aquaculture method that recirculates and re-

uses the water in the system. 

Sustainable: Capable of being maintained at a steady production level without exhausting 

natural resources or having a significant effect on the environment. 

Techno-economic evaluation: Evaluation of the technical and economic aspects of a 

project, as well as the relations between the two, to assist research guidance and planning 

for an organization. 

Tilapia: The name given to parts of the species of cichlid fish from the tilapiine cichlid tribe. 

They are omnivorous sub-tropical fish that are farmed globally.  

Trophic level: The level that an organism occupies on the food chain. 
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1.1 Introduction 

 

The study investigates the feasibility of aquaponics in South Africa. There are a number of 

aquaponics farms in operation in the Garden Route area, and these farms will be used as 

case studies for verification purposes.  

The produce from the aquaponics systems‟ aquaculture component are fish, namely tilapia 

(Oreochromis mossambicus), and vegetables and herbs from the hydroponic component of 

the system. At present, there is no established market, distribution or selling point for tilapia. 

There is said to be a considerable market for tilapia in South Africa, yet most producers 

experience great difficulty in selling it (L Ter Morshuizen 2010, pers. comm., 27 Feb). The 

species of fish is relatively unknown amongst the South African population.  

A method of predicting the future prospects or trends of an industry could be to look at the 

trends that occur in other countries. In the USA, tilapia has risen from almost nowhere to 

being the fifth most popular aquatic organism consumed by humans (Nicholls 2007) 

(Appendix A). This has occurred over the past decade. South Africa is lagging behind 

international efforts to boost aquaculture (Peters 2007), which might imply that a booming 

increase in tilapia production and demand will occur in the future, with adequate market 

development.  

Global production of all species of tilapia is anticipated to increase from 1.5 million tons in 

2003 to 2.5 million tons by 2010, with a sales value of more than R35 billion (FAO 2006).  

From a technical perspective, aquaponics is a sustainable food production method. If it were 

economically viable, a successful aquaponics farm would provide jobs for the surrounding 

population on the farm itself, as well as in tasks up- and downstream in the supply chain of 

the farming operation. This has the potential to uplift the surrounding community. 
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1.2 Background 

 

Integrated aquaculture is a practice in which the by-products of one organism are recycled to 

become the inputs for another. Recirculating integrated aquaculture systems make 

maximum use of the resources within the systems, and minimise the release of harmful 

effluent into the environment.  

Aquaculture is viewed as a means to provide high-quality protein for the global population 

(El-Gayar, Leung 2001).This is essential, as the global fish stocks are being depleted by the 

increased demand for seafood and by unsustainable fishing practices; Figures 1 and 2 

shows the percentage of under-fished, fully fished, and overfished fisheries over time.  

 

 

Figure 1 Global trends in the state of world marine stocks since 1974 (FAO 2008) 

 

Figure 2 Global trends in the state of world marine stocks as a percentage of stocks assessed 
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Embarking on an aquaculture venture is a high-risk investment, where the possibility of an 

unfavourable situation occurring is significant. Start-up failures are very common in 

aquaculture, and globally only one out of every five aquaculture start-up ventures are in 

operation after two years (Timmons, Clark 2009). This statistic proves that adequate 

planning and research should be performed when entering this industry.  

Aquaponics is the symbiotic farming of plants and aquatic animals in a recirculating 

environment (Rakocy, Masser & Losordo 2006) (figure 3). The plants are grown using 

hydroponics, which is a method where the plants‟ roots grow in an inert medium, and absorb 

nutrients from the water (Winterborne 2005). These nutrients come from the fish excretions, 

as well as the microbial breakdown of organic wastes (Rakocy, Masser & Losordo 2006).  As 

water in the system is recirculated through the hydroponic component of the system, the fish 

waste metabolites, in the form of ammonia and nitrogen-containing compounds, are 

removed, thereby making the water suitable for re-use in the aquaculture component 

(Rakocy, Masser & Losordo 2006).   

 

Figure 3 Simple Illustration of the relation between aquaculture, hydroponics, and aquaponics 

 

The combination of operating a recirculating aquaculture system (RAS) and hydroponic 

system together presents a number of advantages. The hydroponic system acts as a biofilter 

for the aquaculture component, and in some cases eliminates the need for a separate filter 

as in conventional RAS‟s. In conventional hydroponic systems, fertilizers need to be added 

to the water in order to sustain plant growth. However, in aquaponics systems, the fish waste 

provides almost all the nutrients needed in order for the plants to grow (Rakocy et al. 2003). 

Water recirculation is increased, thereby prolonging water use and minimising discharge. 

Less water quality monitoring is required when compared to individual RAS‟s and hydroponic 
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systems (Rakocy, Masser & Losordo 2006). The shared cost of operation and infrastructure 

further increases the profit potential. Section 2.6 covers an in-depth discussion on 

aquaponics and the various components of the system. 

This project is undertaken in an attempt to identify avenues to develop the aquaculture 

industry in South Africa by investigating into aquaponics, which is a method of aquaculture. 

There are a number of constraints that impede the development of aquaculture in South 

Africa; this project addresses these constraints, and looks at the potential that exists in this 

unexploited sector. The constraints are detailed in section 2.4 of the literature study.  

For this reason, a techno-economic feasibility study will address the reasons for these 

failures, and attempt to provide solutions and recommendations to help improve upon these 

odds.  

 

1.3 Problem statement 

 

There is a need for a techno-economic feasibility model to be developed for small to medium 

scale aquaponics farms in South Africa. From time to time, situations occur where the 

readiness of investors to invest in aquaculture outpaces the availability of information 

needed to make sound decisions concerning system design, construction, management and 

economics (Rakocy, Hargreaves 1993b). Since aquaponics is a method of aquaculture, this 

statement applies to aquaponics too. These situations will likely lead to suboptimal 

investment decisions for both current and prospective aquaponics farmers. 

At present, the commercial farming of low-value fish species in South Africa is said to be 

economically unfeasible (Rana 2009). There are a number of reasons for this state of affairs, 

which are discussed in the thesis.  

The market for farmed fish is not yet readily established in the country, causing a lack in the 

demand for the product. The South African population is not aware of the benefits of farmed 

fish (AASA 2009), and furthermore has a negative connotation towards freshwater fish and 

fish with a silver-black appearance (such as tilapia) (Britz, Lee & Botes 2009).  

When deciding on whether or not to embark on an aquaculture venture, the first aspect that 

should be studied is the predicted future cash flows of the venture (Beckman, Bok 2009). 

From the information gathered on the case studies in section 4 of this thesis, it is apparent 

that the farmers who have built these aquaponics systems have not performed their market 
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research thoroughly, and therefore are not certain of the demand for their produce. The 

information required for decision making when designing, building and operating an 

aquaponics system should originate from well established facts and / or scientific evidence. 

It is possible that the farmers are not receiving their information and advice from sources like 

these, which may well cause incorrect decisions to be made.  

 

1.4 Hypothesis 

 

An investigation and techno-economic model of aquaponics systems can be used to identify 

and analyse a number of aspects of the cases studies to determine the feasibility of these 

systems. The model can be used to determine near optimal configurations of aquaponics 

systems. 

 

1.5 Scope 

 

The study will examine the process of farming tilapia (O. mossambicus) and plants using 

aquaponics on a small to medium scale in South Africa, and look at the main factors that 

influence the success of such a venture. When known factors are omitted, these omissions 

are motivated or explained. This study is aimed at identifying and optimising aspects of 

current systems and using proven technology to do so. 

 

1.6 Methods 

 

An overview of the current state of aquaculture and aquaponics, both globally and in South 

Africa, will be presented. When studying the industry, a number of information resources are 

used. Library databases are used in order to gather information on the global and local 

industry. The attendance of the Aquaculture Association of Southern Africa‟s Biannual 

Conference helps to provide information on the latest developments in aquaculture in the 

region, as well as provide a networking opportunity with relevant people involved in the 

industry. In addition, structured interviews with people involved in the industry are carried out 

in order to gather information, as well as verify the relevance of the topic to the development 
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of the industry. A three-day RAS course is attended in order to gather information and learn 

about this vital component of the system. 

After the literature study is performed, the farms in the Garden Route area are visited, and 

information is gathered on these systems‟ complete designs, scale, production rates and 

management practices. This information is used as the “as-is” scenario of the industry in that 

area.  

A model is then designed and implemented in Microsoft Excel using the information 

gathered from the literature study and case studies. This model and the design methods 

thereof are described in detail in section 3. 

The model mathematically replicates the biological growth of the aquaculture and hydroponic 

components. Using this, as well as representations of a number of other aspects of the 

system, the model is then used to calculate the predicted cash flows of the system. 

Using the predicted cash flows, a number of financial indicators are calculated to determine 

the feasibility of the systems at all times over a period of 10 years. 

The model is then used to evaluate the current systems as documented in the case studies. 

The model is adapted to represent a particular case study system. The results of the model 

will show whether the case study is feasible. This process is repeated for all four case 

studies. 

Since the aquaculture industry is a dynamic one (Britz, Lee & Botes 2009), all of the 

parameters that could possibly change in the techno-economic model are variable. A 

sensitivity analysis on these parameters is then performed; this is done to provide insight 

into the parameters and their effects on the feasibility of the operation. The sensitivity 

analysis also reveals the risks that the ventures are exposed to. 

The results, insights and recommendations of the feasibility study, as well as information 

gathered from the literature study on aquaponics, are then utilized to design and specify a 

system that is theoretically more feasible than the current systems in operation.  

Research into the seafood market in South Africa and the potential markets for tilapia is 

undertaken in order to establish the potential price for the aquacultural produce. Vegetables 

and herbs have a well-established market, and for this reason, little consideration is given to 

the marketing aspect of these products in this thesis.  
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2 Literature study  

 

Aquaponics is the combination of aquaculture and hydroponics. Hydroponics is a fairly 

mature technology, and successful ventures operate worldwide (Carruthers 2002). 

Aquaculture, and particularly tilapia farming and aquaponics, is a high-risk venture, and the 

failure of such a venture is a regular occurrence (Timmons, Clark 2009). For this reason, the 

literature study should focus on the aquaculture component of the system in order to gain 

the information necessary to deal with this problem.  

The history of aquaculture, the characteristics of the species, as well as industry trends in 

South Africa and elsewhere are some of the aspects that need to be studied in order to 

perform a comprehensive literature study.  

The information on these subjects is obtained from sources that are relevant to the thesis. In 

cases where it is not possible to obtain the information required from published sources, 

compromises are made such as using information that is unpublished, or obtaining it from 

people who rely on personal experience for their information. This is particularly applicable to 

the assimilation of information for the case studies. 

  

2.1 Aquaculture 

 

Aquaculture, the farming of aquatic organisms, is the fastest growing type of food production 

in the world (Tidwell, Allan 2001). Nearly 50 % of the fish consumed by humans is farmed 

(Kourous 2006). Globally the wild fish stocks are declining whilst the demand for fish is 

constantly increasing, making the prospect of aquaculture increasingly attractive (Peters 

2007). 

 

2.1.1 Background of aquaculture 

 

Aquaculture production has existed for thousands of years, and is said to have been 

practised by the Chinese as far back as 2500 BC (Rabanal 1988). The Japanese, Romans, 

Central Europeans and Hawaiians also practiced aquaculture at various stages through 
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history (Rabanal 1988). In the past couple of decades, however, aquaculture has boomed 

significantly (Tidwell, Allan 2001).  

 

2.1.2 Aquaculture in South Africa 

 

Meaningful statistics on the aquaculture industry in South Africa are difficult to obtain. For 

this reason, the Aquaculture Institute of South Africa performed a nation-wide benchmarking 

survey on the aquaculture industry in order to gather data. The information in the following 

section is obtained from this survey (Britz, Lee & Botes 2009). 

 

2.1.2.1 Production 

 

The total South African aquaculture production in 2008 was 3654 tons, with a value of R327 

million. Analysing these facts in terms of rand value of various aquaculture produce reveals 

some interesting information. Abalone represents 81 % of the rand value of aquaculture in 

2008. Trout production represents a further 8.5 % of the total value of aquaculture in South 

Africa. The remaining products of significance produced are koi, ornamentals, oysters and 

mussels. Tilapia production accounts for an almost negligible fraction of the aquaculture 

industry in South Africa. 

 

2.1.2.2 Producers 

 

South African aquaculture enterprises are generally relatively young businesses. 

Approximately 50 % of organizations are less than 10 years old, and 31 % are less than five 

years old. Only 20 % of enterprises are older than 20 years.  

A large proportion (76 %) of aquaculture enterprises are small businesses with a turnover of 

less than R5-million. Of the larger enterprises with turnovers of more than R5 million, the 

majority are marine ventures, producing abalone.  

Most of the larger commercial enterprises (with a turnover of more than R5 million per 

annum) are located in the Western Cape; the small-scale commercial enterprises are 

distributed more evenly amongst the provinces of South Africa. 
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Vertical integration, the process by which a number of steps in the production and 

distribution are controlled by a single entity, is found to occur in the primary production 

phase in the industry. 68 % of producers operate their own hatcheries, and 75 % of 

producers raise fry or early juveniles.  

Many of the producers are vertically integrated into secondary production activities. Almost 

half of the producers are involved with the packing and distribution of the product, and 31 % 

are involved in processing the produce. 

The survey confirmed that the seafood market is in a period of transition, with declining 

supplies of local wild fish, and increasing market share by imported wild and farmed 

products. There is an opportunity for locally farmed products to gain a greater market share 

in the fresh high value product markets. It is unlikely that locally cultured products will be 

competitive in the frozen, commodity type product niches.  

There is a growing trend towards pre-cooked, ready-to-eat products in supermarkets which 

aquaculture producers may be able to exploit. 

South African seafood suppliers are buying into the concept of sustainable seafood, and 

sustainability is becoming important in purchase decisions. Aquaculture products are 

regarded as potentially sustainable products, although consumers and buyers were aware of 

some of the negative health and environmental associations with intensively farmed 

products. Therefore, if the aquaculture industry establishes itself as a credible source of 

sustainable seafood, this should help to secure market share in the future. 

 

2.2 Tilapia 

 

The species of tilapia considered in this project is O. mossambicus, a tropical fresh-water 

fish that occurs naturally in southern Africa (Grafman, Beckman & Blazek 2010). The O. 

mossambicus species is not one of the faster-growing species of tilapia, but due to a 

government ban on the farming of alien fish species, this is the species that the aquaponics 

farmers in South Africa farm with (L De Wet 2010, pers. comm., 27 Jan). More information 

on the ban is provided in section 2.4. There has been a dramatic increase in the production 

of O. mossambicus tilapia over the past 40 years (FAO 2008). Figure 4 shows the 

aquacultural production of tilapia O. mossambicus over time. There are other species of 

tilapia that have faster growth rates than O. Mossambicus (L De Wet 2010, pers. comm., 27 
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Jan), and allow the farmers to increase production throughput, thereby providing them with a 

greater return on their investment.  

 

 

Figure 4 Global production of tilapia O. mossambicus (FAO 2008) 

 

The global aquaculture production of tilapia increased steadily between 1998 and 2007 

(figure 5). 

 

Figure 5 Global production of all tilapia (FAO 2008) 
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2.2.1 Tilapia characteristics 

 

Tilapia is an omnivorous fresh-water fish. It is highly suited to aquaculture, and history 

suggests that is was one of the first species of fish cultured by man. Evidence of the culture 

of the fish species is found in Egyptian tombs that date back to 3000 years ago (Popma, 

Masser 1999). In recent times, tilapia was chosen for aquaculture as a means of producing 

cheap protein (Pillay 1990).  

There are a number of characteristics that make tilapia attractive for tank culture. It is a 

hardy fish, breeds readily in almost any type of water body, and because it is omnivorous, it 

does not require a high percentage of protein in its diet (relative to carnivorous fish species). 

The species can tolerate the levels of crowding and handling that are required in a RAS. 

One of the reasons for this is because they have a heavy slime coat that protects them from 

abrasion and bacterial infection that would affect many other species adversely (DeLong, 

Losordo & Rakocy 2009). Tilapia grow well when stocked at high densities, and when good 

water quality is maintained; yet, they are also amazingly tolerant of bad or variable water 

quality (Popma, Masser 1999). 

 

Tilapia need a smaller percentage protein in their diet, which allows them to be grown on 

diets that are high in vegetable matter such as soy protein (Shiau, Chuang & Sun 1987). 

This diet can be sourced in a more renewable and sustainable manner than those containing 

fish meal and fish oil derived from wild fish catches. 

There are a number of biological constraints to the development of commercial tilapia 

farming. The inability of the species to withstand continued exposure to colder water 

temperatures is a drawback. Another drawback is that the species reaches sexual maturity 

at an early stage in the life cycle of the fish, resulting in spawning before the fish reach 

market size (Popma, Masser 1999). This stunts the growth of the fish, decreasing 

productivity of an aquaculture operation.  

 

2.2.2 Water quality requirements for tilapia 

 

Tilapia can withstand lower concentrations of dissolved oxygen, and higher concentrations of 

carbon dioxide, suspended solids and total ammonia nitrogen (TAN) compared to trout (table 
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1). These parameters are recommended to sustain acceptable growth and reduce stress 

levels for the fish.  

 

Table 1 Guide to recommended water quality ranges for tilapia and trout (Timmons, Clark 2009) 

parameter tilapia trout 

temperature °C 24 to 29 10 to 18 

oxygen mg / L 4 to 6 6 to 8 

oxygen mm Hg 90 90 

carbon dioxide mg / L 40 to 50 20 to 30 

total suspended solids mg / L < 80 < 10 

total ammonia nitrogen mg / L < 3 < 1 

ammonia mg / L < 0.6 < 0.02 

nitrite mg / L < 1 < 0.1 

chloride mg / L > 200 > 200 

 

For further reading on water quality requirements of tilapia, the following reading is 

recommended: (DeLong, Losordo & Rakocy 2009). 

 

2.2.3 Breeding of tilapia 

 

Breeding tilapia is a relatively simple procedure. However, to produce a large number of high 

quality fry regularly, requires greater attention, good quality feed, good broodstock and 

proper disease control (DeLong, Losordo & Rakocy 2009).  

The O. mossambicus species of tilapia falls under the category of mouth-brooders, which 

means that the female tilapia incubates the eggs in her mouth until they hatch (DeLong, 

Losordo & Rakocy 2009). The breeding process of the fish takes place as follows (DeLong, 

Losordo & Rakocy 2009). The female lays the eggs on the bottom of the tank, after which 

the male fertilizers the eggs. The female then picks up the eggs into her mouth and 

incubates them. After around three to five days, the eggs hatch, and the hatchlings remain in 

the female‟s mouth while they absorb their egg-sac. The egg-sac is a membranous sac 

attached to the hatchling and provides the fish with nutrition in the early stages of its life 

cycle.  
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A method that is widely used to better manage the breeding process is to capture the eggs 

from the female‟s mouth before they hatch and place them into an artificial incubator 

(DeLong, Losordo & Rakocy 2009). This can be done by catching the female and removing 

the eggs from her mouth. Often the female expels the eggs when captured; if the female 

does not release the eggs, the fish can gently be thrust backwards and forwards in the water 

to expel the eggs. Figure 6 shows an incubator used by a hatchery in the Garden Route 

area. There is a gentle upward flow of water in the container so that the eggs are 

suspended. This prevents fungus from growing on the eggs, and increases the hatch rate. 

Once the eggs hatch, the hatchlings swim through the overflow at the top of the incubator 

and into another tank. Once the hatchlings have absorbed their egg sacs they become 

known as fry. Once a fish has grown to a slightly larger size and resembles a human finger 

in shape, they are referred to as fingerlings. The full life cycle of tilapia is shown in figure 7. 

 

 

Figure 6 An incubator containing tilapia eggs 

 

Another way to better control the breeding process is to stock the broodstock in net 

enclosures called hapas that are suspended in the tanks (DeLong, Losordo & Rakocy 2009). 

The hapas make it easier to manage and capture the broodstock and hatchlings.  
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Figure 7 A description of the life cycle of cultured tilapia (Chapman 2000) 

 

2.3 Tilapia farming in South Africa 

 

In South Africa, the market for tilapia is almost non-existent (Britz, Lee & Botes 2009), and 

subsequently the production thereof is limited.  

However, two cases have been found that suggest that the demand for tilapia may be 

increasing. There is a case in South Africa where a prospective tilapia producer signed a 

contract with a fishery to buy up their produce for R25 per kilogram whole fish. The fishery 

would then sell the fish for R39.95 under the names “red snapper” or “bream” (T Georgio 

2010, pers. comm., 3 June). A pilot tilapia farm operated in 2008 and produced 

approximately 10 tons, which was valued at R300 000. This contributed 0.09 % of the total 

aquaculture value produced that year, and 0.27 % of the tonnage (Britz, Lee & Botes 2009). 

The odds are stacked heavily against the entry of small organizations into aquaculture (Britz, 

Lee & Botes 2009). A number of organizations are not in production any longer, and 

furthermore a number stated that they were not producing any product at the time of the 

survey. The main reasons for the organizations not producing anything were because their 

operations are not financially viable, or there is a regulatory problem that they could not 

overcome. 

Over the past three years, there has been a net exodus of small producers in the industry, 

juxtaposed with a period of consolidation and expansion of larger producers.  
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There have been very few small scale entrants into the aquaculture industry, apart from a 

number of government sponsored small scale farmers. 

The majority of the constraints to developing an enterprise relate to the application of 

environmental legislation and permitting, the lack of coordination between government 

departments, and compliance with health and product quality standards.   

The established medium size enterprises are the backbone of the South African aquaculture 

industry at present. These organizations have reached a size where they have the critical 

mass to run vertically integrated operations. These producers are generally optimistic about 

market prospects for aquaculture products, yet they are very conscious of the dynamic 

nature of markets which are increasingly influenced by global forces. 

 

2.4 Constraints limiting the development of aquaculture 

 

These constraints need to be taken into account throughout the thesis as they have an effect 

on the feasibility of the operations. Overlooking any of the constraints, or incorrectly 

assuming an aspect of a constraint without researching it duly, will likely cause an incorrect 

result. 

 

2.4.1.1 Energy constraint 

 

A reliable source of energy is needed to operate the aquaponics system (Timmons, Ebeling 

2007). If the power source is not 100 % reliable, a backup source of power is needed in 

order to ensure the bio-security of the produce (Timmons, Ebeling 2007). In rural areas 

where electrical grid power is not available, renewable sources of energy are an option 

(MacColl 2009). The dilemma with this option is that renewable energies are expensive in 

terms of initial capital costs, which may prohibit the feasibility of this option (MacColl 2009).  

In February 2010, the National Energy Regulator of South Africa (NERSA) approved an 

average price increase on all tariffs at 24.8 % per year (Eskom 2010). This inflation on the 

electricity price must be taken into account in the feasibility study.  

The heat energy required may also be supplied by wood, oil or coal burners; this is verified 

by the case studies. 
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2.4.1.2 Constraints on aquaculture of tilapia in South Africa 

 

The following are limitations that hamper the development of tilapia farming in South Africa: 

 

 Species ban: superior species of tilapia, which have higher growth rates, such as the 

alien Oreochromis. niloticus and genetically improved / enhanced species, are 

banned from being farmed in South Africa because of their potential to adversely 

affect the natural ecosystem were they to escape into the wild (L De Wet 2010, pers. 

comm., 27 Jan). Therefore only O. mossambicus, a slower-growing species of tilapia, 

is allowed to be farmed in South Africa. After researching the literature and enquiring 

from people involved in the aquaculture industry, the author found no cases in South 

Africa where a permit has been issued for the O. niloticus or other alien tilapia 

species. 

 Temperature constraint: Tilapia is a tropical species requiring relatively warm water in 

order to grow at a suitable rate (DeLong, Losordo & Rakocy 2009, Diver, Rinehart 

2006). In South Africa, it is not possible to have water at these temperatures 

throughout the year without adding heat energy, which increases the cost of 

production (K Cuthbert 2009, pers. comm., 22 September). Tilapia grows best in the 

temperature range from 27 to 29 °C, but acceptable growth rates are reported 

between 25 and 32 °C (DeLong, Losordo & Rakocy 2009). Moreover, temperatures 

in the extreme upper range cause it to become more challenging to maintain 

acceptable dissolved oxygen concentration levels in the water (DeLong, Losordo & 

Rakocy 2009). Temperatures between 10 and 16 °C will stress the fish, reduce 

feeding behaviour, and make the fish more vulnerable to disease. Large variations in 

temperature also cause stress for the fish (Timmons, Clark 2009). For this reason, 

temperatures should remain constant, and should remain within the correct 

temperature range. 

 Ensuring a reliable market for the produce of the operation is a critical aspect of any 

production industry (Gegner, Rinehart 2006). Therefore, the amount of attention 

given to marketing and other business aspects is one of the keys to success of 

commercial tilapia farming (Gupta, Acosta 2004). However, market evaluations are 

rarely undertaken by the farmers themselves because of the time, expense and 

difficulty of obtaining the cooperation of wholesalers and retailers (Watanabe et al. 

1997).  
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 It has been found that a food-production facility in a greenhouse environment may 

not be successful unless it is in a speciality market such as culinary or medicinal herb 

(Gladon 2008). Niche marketing is the key to success for most private sector 

aquaponics operations (Nerrie et al. 2004). 

 

2.4.2 Recommendations to promote aquaculture 

 

The most significant constraints to enterprise development of freshwater aquaculture users 

in South Africa are (Britz, Lee & Botes 2009): 

• environmental regulatory requirements; 

• site selection; 

• permitting; and 

• access to finance. 

The promotion of South African aquaculture products is another recommendation. Access to 

skilled labour as well as research and development are also viewed as constraints 

hampering development (Britz, Lee & Botes 2009). 

Freshwater aquaculture producers currently operating in the industry have rated the 

following issues as extremely important government interventions to promote the 

aquaculture industry (Britz, Lee & Botes 2009): 

• research, technology development and transfer;  

• facilitation of access to finance; 

• national policy, strategic plan and implementation plan for the sector; 

• promotion of South African aquaculture; 

• identify and zone areas for aquaculture development; 

• promotion of best practice management; 

• promotion of trade in aquaculture products; 

• capacity to monitor and guarantee the safety of the aquaculture products; and 

• promotion of aquaculture education, training and skills development. 

The respondents of the benchmarking survey are predominantly not tilapia farmers, but the 

findings are noteworthy nonetheless. 
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2.4.3 Consumer and seafood industry 

 

A brief study of the current state of the consumer and seafood industry in South Africa could 

uncover some aspects that are of interest to the study. 

 

The aforementioned survey revealed some facts that have implications on the development 

of aquaculture (Britz, Lee & Botes 2009). 

 Seafood consumers in South Africa lack awareness of aquaculture. A surprisingly 

high 85 % of consumers have not heard of aquaculture, and do not know the 

difference between wild and farmed aquaculture products. If given the choice 

between wild and farmed products, they would choose the wild produce, as it is 

perceived to be more “natural”. 

 Consumer buying choices are not strongly influenced by religion and culture, but race 

and geographic location did. 

 The consumers in the Western Cape Province displayed the greatest awareness of 

aquaculture. 

 In general, South African consumers are conservative in their seafood choices. They 

tend to stick to what they know. This is a problem because the South African 

population is somewhat unfamiliar with tilapia. 

 Consumers who are better educated were more aware of what aquaculture was. 

They also purchased a greater variety of seafood, including sushi.  

 Consumers would like to get more information the products they purchase, such as 

whether they were farmed or imported. Consumers indicated a preference for local 

seafood products. 

 

The following points relate to the seafood buyers in South Africa (Britz, Lee & Botes 2009). 

• Seafood buyers for restaurants, wholesalers, and supermarkets, are familiar with 

aquaculture products and their positive product characteristics. The buyers expected 

a larger percentage of the market to be supplied by aquaculture products in the 

future. 

• Buyers do not distinguish between aquaculture and wild products when deciding 

upon a purchase, but rather on the basis of required product characteristics, namely: 
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quality, freshness, availability, appearance and price. Generally, the buyers do not 

inform the customer whether a product is of wild or farmed origin. 

• Restaurants and wholesale seafood outlets feature more aquaculture products than 

supermarkets. The latter sell mainly frozen, wild seafood products, primarily salmon, 

prawns and mussels. 

• Seafood buyers indicated that the supply of certain wild seafood products such as 

fresh tuna and linefish was becoming increasingly limited. 

• Restaurant and seafood wholesale buyers have indicated that they would purchase 

more aquaculture products, and particularly fresh products, if they were available.  

• Seafood buyers are aware of the sustainability issues in the seafood and fishing 

industry, and generally supported awareness and labelling schemes such as the 

World Wildlife Fund‟s Sustainable Seafood Initiative, as well as the Marine 

Stewardship Council certification in their purchase choices. Aquaculture products are 

perceived as a potentially sustainable supply of seafood. 

This section shows that the aquaculture industry is showing signs that it will grow in the 

future. It would appear that the image of aquaculture should be promoted in order to 

increase the awareness of the benefits thereof.  

 

2.4.4 Commercial scale vs. small scale aquaponics 

 

Aquaponics systems, or any relatively intensive aquaculture operation with a high 

productivity relative to the area used by the operation, are capital intensive ventures 

(Timmons, Clark 2009). Economies of scale occur in industries with high capital costs. This 

implies that any aquaponics venture should be done on a large-scale in order to maximise 

the efficiency of the operation.  

However, according to Nerrie et al. (2004), small and medium scale aquaponics RAS are 

showing promise. The reasons for the increasing interest by farmers are food safety issues, 

farm diversification, labour efficiency and facility utilization.  

The growth of aquaponics is mired by a lack of marketing and applied research, the 

availability of inputs, and the intensity of management (Nerrie et al. 2004). This thesis 

addresses one of the constraints that are placed on aquaponics, namely the lack of applied 

research. 
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2.4.5 Marketing of a niche product 

 

The South African population is relatively unfamiliar with the tilapia species. They are 

conservative with their choice of seafood, furthermore decreasing their inclination to buy 

tilapia (Britz, Lee & Botes 2009). Therefore, the marketing of tilapia should be addressed. 

In order for a niche marketing aquaculture enterprise to be successful, it will need to enter 

markets that are not in direct competition with larger-scale aquaculture (Gegner, Rinehart 

2006). There are no large-scale tilapia aquaculture enterprises in operation in South Africa; 

however, the small scale tilapia farmers should not try to market their product in direct 

competition with other fish types such as hake. These fish sell for lower prices and the 

farmers would not be able to generate a profit from their operations. In order to demand a 

price premium for a product, a niche marketing approach should be used. A disadvantage of 

niche marketing is that considerable time must be spent analyzing and developing these 

markets (Gegner, Rinehart 2006). 

 It is important to identify a reliable market, and even a backup market (Gegner, Rinehart 

2006). (T Georgio 2010, pers. comm., 3 June) recommends that signed contracts stipulating 

the terms of purchase for the farmed produce be arranged with buyers before an 

aquaculture venture is embarked upon. 

 

2.5 Methods of aquaculture 

 

The technology used and the design of an aquaculture system varies for different methods 

of producing fish. The following section discusses the various methods of growing fish, in 

order to illustrate how aquaponics relates to these methods. These methods are categorised 

as pond culture, cage culture, raceways and RAS. 

Pond culture makes use of open earth ponds in which to grow the fish. This method is 

usually practiced on an extensive basis in terms of land utilization. Stocking densities are 

relatively low, and input costs are minimised. The fish may or may not be fed, as the ponds 

sometimes provide enough nutrients to sustain suitable fish growth. 

Cage culture involves growing fish in a mesh or wire structure in an open water body. The 

fish are fed, and capital costs required are higher than in pond culture. 
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Raceways are another method of producing fish, where the fish are held in rectangular 

structures, with fresh water entering from one side, and leaving through the other. This 

allows the fish to be stocked at higher densities, increasing productivity. Raceways are 

normally open systems, with no filtration. These systems also require a higher capital cost, 

and operating costs are moderate as the fish are provided with feed. 

RASs are more technologically advanced than pond, cage or raceway systems. These 

systems require a high capital cost, as the water is filtered and re-used, requiring the use of 

pumps and other accessories. These systems allow the fish to be stocked at high densities, 

which provides a higher income relative to the space used by the system. 

Aquaponics falls into the category of RAS. The high capital cost of such systems requires 

that the systems be operated at near-maximum efficiency in order to generate sufficient 

income to repay the initial costs (Rakocy, Masser & Losordo 2006). Operating a system at 

near-maximum efficiency means that the system is operating at the level where the risk is 

the highest (Masser, Rakocy & Losordo 1999). The feasibility section of the study examines 

the risks that the systems are exposed by performing a sensitivity analysis. 

 

2.6 Aquaponics 

 

The section discusses the development of aquaponics, from its initial inception in ancient 

times, to the current cutting-edge of research and technology. The components of an 

aquaponics system are considered, and some aspects are discussed when considering the 

design, construction and management of an aquaponics system. 

 

2.6.1 Development of aquaponics 

 

Long before the term “aquaponics” was coined, ancient people made use of the symbiotic 

relationship between fish and plants. The Aztec Indians raised plants on rafts on the surface 

of a lake circa 1000 AD (Jones 2002). The Chinese also made use of integrated farming by 

constructing so-called flow-though systems, as explained below (Meux 2010). They would 

grow livestock and poultry in cages suspended above ponds. The animal droppings, as well 

as spilled food, would then fall through the cage and into the pond, where they would grow 

carp. The water would then flow to another pond where a hardier species like catfish would 
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be grown. The fish consume the nutrients that are not utilized by the livestock. Finally the 

water, which is now rich in nutrients suitable for plant growth from the fish faeces and urine, 

would be used to irrigate rice paddies. The sludge that accumulates at the bottom of the 

ponds was also used for fertilizing rice paddies.  

The concept behind aquaponics is that the efficiency of the utilization of input products is 

increased by using the so-called waste products of one trophic level to feed another trophic 

level of growing organisms. 

In the past 40 years, much research has been done and progress made in RAS (Jones 

2001). The benefit of RAS compared to traditional pond aquaculture is that large quantities 

of fish can be produced using a fraction of the water and space that traditional aquaculture 

uses.  

The most notable research in aquaponics has been done at the Aqricultural Experimentation 

Station at the University of the Virgin Isles (UVI), St. Croix (Jones 2001). Dr. James Rakocy 

is the director of the station, and is credited as being the world leader in freshwater 

aquaponics science and technology (Wilson 2005). Dr. Rakocy‟s research, as well as that of 

the UVI, is referred to a number of times in this thesis. 

 

2.6.2 Components of an aquaponics system 

 

An aquaponics system is similar to a conventional RAS in a few aspects. Normal RASs have 

a rearing tank containing the fish, and a recirculating component where the water is treated. 

In aquaponics, this recirculating system incorporates the hydroponic component. This is 

illustrated by examining the components of an aquaponics system. These essential 

elements are (Rakocy, Masser & Losordo 2006): 

• the fish-rearing tank; 

• settleable solids and suspended solids removal component; 

• biofilter; 

• hydroponic component; and 

• sump.  
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Figure 8 A typical arrangement of aquaponics system components (Rakocy, Masser & Losordo 2006) 

 

Some designs combine the biofilter and hydroponic subsystem as one unit (figure 8). This 

can be accomplished in a variety of ways. Using gravel as the growing media for the 

hydroponic component provides a sufficiently large amount of surface area for beneficial 

bacteria to grow on. Another way to combine the two components when utilizing raft 

hydroponics is to design the hydroponic component sufficiently large that there is enough 

surface area for biofiltration to take place (Rakocy, Masser & Losordo 2006). Combining 

these two components is a desirable goal as it eliminates the need to construct a separate 

biofilter. This is one of the key advantages of aquaponics over separate RASs and 

hydroponics systems. 

The combination of the solids removal, biofiltration and the hydroponic subsystem 

components is shown in figure 8. Care must be taken in designing systems in such a way, 

as solids capture is an important aspect of RASs. Solids capture and the significance thereof 

is discussed further in the next section. 

The effluent water produced by the aquaculture component of the system has a higher 

concentration of organic matter (Rakocy, Masser & Losordo 2006). This water must be 

treated and the amount of organic matter reduced, to sustain an acceptable water quality. 

This is accomplished by the recirculating action of the water in the aquaponic system. 

The water then flows to the hydroponic component of the system, where dissolved nutrients 

are absorbed by the plants. This reduces the concentration of nitrates and other nutrients, 

effectively cleaning the water for re-use in the aquaculture component of the system (Diver, 

Rinehart 2006). From there the water typically flows into a sump and is pumped back into 

the fish-rearing tank. 
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2.6.3 Solids capture 

 

Solids capture is the component of a RAS that reduces the concentration of total solids in 

the system. Solids capture is a key component of RAS, as the accumulation of solids in a 

system decreases the water quality and can subsequently cause catastrophic failure of the 

system. In conventional RAS, solids removal is the key to a well-designed system, as it 

makes it easier to control other water quality parameters (Timmons, Clark 2009). This 

statement is applicable to aquaponics too, as the accumulated organic matter deteriorates 

the water quality because it decomposes, consuming oxygen.  

The selection of the most appropriate solids capture device depends on the organic loading 

rate (the daily feed input and faeces production of the fish), as well as on the size of the 

plant growing area. If a larger aquaculture component relative to the plant growing area is 

designed, a highly efficient solids removal device is needed. Conversely, if a smaller 

aquaculture component area is used relative to the plant growing area, it may be 

unnecessary to use a solids capture device. It is, however, still important to ensure that 

solids do not build up in the fish-rearing tanks.  

The mineralization process should be taken into account when selecting a solids capture 

device. Some accumulation of solids in the system may be beneficial, as when the solids are 

decomposed by micro-organisms, inorganic nutrients essential to the plants‟ growth are 

released (Rakocy, Masser & Losordo 2006). This decomposition process is known as 

mineralisation. 

 

2.6.4 Biofiltration 

 

The information in the following section is obtained from a textbook which is widely accepted 

as the leading resource for information on RAS (Timmons, Ebeling 2007). 

 

2.6.4.1 Background 

 

Biofiltration is a method of transforming harmful organic compounds into useful ones through 

the use of microbiological activity. 
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 Fish expel various nitrogenous waste products through gill diffusion, gill cat-ion exchange, 

urine and faeces. In RAS, this ammonia must be broken down in order to prevent it from 

accumulating to toxic levels for fish.  

Biological filtration is an effective way of controlling ammonia levels in RAS. There are two 

groups of bacteria that collectively perform nitrification. Nitrification is a two-step process 

where ammonia is first oxidised to nitrite and then nitrite is oxidised to nitrate. The steps are 

normally carried out sequentially. 

Ammonia oxidising bacteria obtain their energy from catabolising un-ionised ammonia to 

nitrate, and are commonly known as Nitrosomonas spp. bacteria. The chemical reaction 

takes place as follows: 

NH4
+ + 1.5 O2 → NO2

- + 2 H+ + H2O............................................(1) 

Nitrite oxidising bacteria oxidise nitrite to nitrate, and are commonly known as Nitrobacter 

spp. bacteria. This reaction takes place as follows: 

NO2
- + 0.5 O2 → NO3

-............................................................(2) 

The overall reaction is shown below. 

NH4
+ + 2 O2 → NO3

- + 2 H+ + H2O...................................................(3) 

In biofilters, these beneficial bacteria co-exist with heterotrophic micro-organisms which 

metabolise biologically degradable organic compounds. These heterotrophic bacteria grow 

significantly faster than the nitrifying bacteria and will prevail over them in competition for 

space and oxygen given the opportunity. This will occur if the concentration of dissolved and 

particulate organic matter is high; in order to prevent this from happening, the source water 

for the biofilter should be as clean as possible, with a minimal concentration of total solids. 

As part of the chemical reaction of nitrification, the following is applicable: for every gram 

(1g) of ammonia nitrified, 4.57g of oxygen is required, and 7.05g CaCO3 is required. As 

shown, nitrification consumes oxygen, as well as alkalinity. In other words, nitrification is an 

acid-forming chemical process, so if the alkalinity is not maintained, the pH in the biofilter will 

decline, and affect biofilter performance. A rule of thumb is to add 0.25kg baking soda 

(alkaline) for every 1kg of feed added into the system. 

 

 



26 
 

2.6.4.2 Ideal biofilter characteristics 

 

There are a number of different biofilter designs, each with their respective advantages and 

disadvantages. The ideal biofilter, however, according to RAS principles would have the 

following properties: 

 maximise media specific surface area; 

 remove 100 % of inlet ammonia concentration; 

 generate minimal nitrite; 

 maximise oxygen transfer; 

 require a relatively small footprint; 

 use inexpensive media; 

 have minimal headloss; 

 require minimal maintenance; and  

 does not capture solids. 

 

The advantages that are most beneficial to the system should be addressed when designing 

the system. In aquaponics, the footprint of the biofilter unit does not have to be minimised, 

because the hydroponic growbeds can be used as the biofilter. The media specific surface 

area also doesn‟t have to be maximised, as space is not a critical consideration. The 

performance properties of the biofilter remain applicable though, but the elimination of the 

two above-mentioned properties makes it easier to design the unit.  

The performance of a biofilter can be quantified by the amount of total ammonia nitrogen 

(TAN) can be converted into nitrate. The unit grams TAN converted per square metre of 

biofilter per day (grams TAN/m2.day) is used to rate the performance of biofilters. Although 

the TAN removal rate is actually proportional to the amount of surface area available for 

bacterial growth in the biofilter, the removal rates are expressed in a per unit volume basis, 

due to the difficulty in measuring the media‟s actual surface area. 

 

2.6.4.3 Biofiltration design 

 

The design of biofilters is a complicated process; this section will look at the important 

factors to be taken into account. 
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The biofilter should be designed such that a balance is struck between minimising the capital 

costs, operating costs, and risk management, whilst optimising productivity and profitability 

(Timmons, Ebeling 2007). There are a number of constraints that affect the design of a 

biofilter, and which must be taken into account when designing one. The pre-determined 

constraints that are used in the Excel model when calculating biofiltration include the 

following: 

 system volume; 

 maximum standing crop (culture density); 

 maximum and average daily feed rate; and 

 temperature; 

There are various other constraints that have an influence on these constraints (e.g. final 

weight of the fish harvested affects the maximum feed rate), and these are calculated 

accordingly. 

The aquaponics systems studied in this thesis do not compete on a large commercial scale. 

Therefore, the design of the biofilter is less critical than those of a commercial RAS farm 

(Timmons, Ebeling 2007). The reason for this is that for small farms, the biofilter component 

can be over-designed and the added cost should not be of critical importance to the overall 

economic success of the system. Smaller operations such as those considered in this thesis 

target niche markets, and therefore do not have to compete in the wholesale market where 

margins can be extremely small relative to niche markets. 

In biofilters, the oxidation process from ammonia to nitrite and nitrate requires certain levels 

of oxygen in the influent water for the process to take place. The process consumes the 

oxygen according to equation 3 in (section 2.6.4.1). 

In order to design the biofilter requirements, the following steps should be followed 

(Timmons, Ebeling 2007):  

 calculate dissolved oxygen requirements; 

 calculate water flow requirement for fish dissolved oxygen demand;  

 calculate TAN production by fish; 

 calculate surface area of media required to remove TAN; 

 hence calculate volume of media, dependant on media type; and 

 calculate biofilter cross-sectional area, depth and volume required. 

The final calculation in the steps above is impractical to perform in the cases considered in 

this thesis. This is because the aquaponics systems do not use separate biofilters as in 
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conventional RASs. The flow rates are, however, calculated to ensure that the biofiltration 

component is suitable for the production rates specified in the cases. 

In aquaponics systems, a favourable situation would be for the hydroponic component of the 

system to serve as the biofiltration component as well (Timmons, Ebeling 2007). This can be 

done if the ratio of the aquaculture component and hydroponic component are designed 

appropriately. Once again solids capture is a critical component, as the clogging of media 

such as gravel has far-reaching implications and requires a large amount of labour to clean 

up. In severe cases where the gravel media is clogged, the hydroponic component actually 

produces ammonia as opposed to removing it, as a result of organic matter decaying. 

The potential of a highly unfavourable situation occurring as a result of biofiltration failure 

necessitates that the biofiltration component of the system be designed accurately, and that 

a safety factor be used to provide additional robustness for unforeseen circumstances. 

Biofilter design calculations for the case studies are performed in section 3.3.4. 

 

2.6.5 Hydroponic component 

 

The information in the following section is obtained from (Rakocy, Masser & Losordo 2006, 

Diver, Rinehart 2006). There are a number of different methods of hydroponic cultivation. 

The hydroponic component of an aquaponics system can be constructed in a number of 

ways. The two main types of hydroponics are medium culture and solution culture.  

Medium culture uses an inert medium such as gravel or expanded clay in which the plants‟ 

roots grow. Typically, the system is operated on a reciprocating mode, where the growbed is 

flooded with nutrient-rich water, and the plants absorb the nutrients through its roots. The 

growbed is then slowly drained for a period, to ensure adequate aeration of the plants‟ roots. 

Solution culture is a method where the plants‟ are suspended into a body of water where 

they absorb nutrients. It is categorised into static solution culture and continuous flow 

solution culture. The static solution flow method widely used in aquaponics is known as raft 

hydroponics. A number of rafts are floated on a water body known as a growbed. Seedlings 

are planted into net pots which are placed into holes in the raft. The plants‟ roots grow in the 

culture water, while the canopy grows above the raft surface. The water is aerated using 

airstones to increase the oxygen concentration in the water.  
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The continuous flow solution culture method of interest in aquaponics is called Nutrient film 

Technique. This method consists of a number of narrow troughs, in which the plants‟ roots 

are exposed to a thin film of water flowing through the troughs. The plants‟ roots are 

provided with water, nutrients and oxygen in this manner.  

The design of the aquaponics system determines whether the plants will need additional 

nutrients to be added to the system in order to sustain satisfactory growth. For maximum 

growth, plants in aquaponics systems require 16 essential nutrients. The design of the 

system will dictate how much solids are retained and can be broken down in the 

mineralization process, thereby releasing essential inorganic nutrients. If the solids capture 

component is too efficient, the plants may require additional nutrients. 

 

2.6.6 Stock management 

 

There are a number of methods to manage fish stocks. The ponds can be stocked with 

fingerlings at low densities (kg/m3), and the fish grow to market size in the same tank. 

Alternatively, the fish can be transferred into larger tanks, and the number of fish reduced so 

that the average stocking density of the ponds is higher during a higher proportion of the 

grow-out period. The latter method makes the most efficient use of space and equipment. 

Additionally, in aquaponics, designing the system such that it produces a stable production 

of nutrients is beneficial to the hydroponic component of the system. The disadvantage of 

the latter method (transferring the fish to larger tanks at various stages) is that more tanks 

are needed in the system, requiring additional plumbing, as well as monitoring and pumping 

of the water. Another method of stock management is to periodically harvest a pond and 

remove the fish that have reached harvest size. A number of fingerlings can then be added 

to the existing stock. This method makes it very difficult to manage the fish stock, and does 

not remove slower-growing fish, thereby decreasing productivity. 

 

2.6.7 Support components 

 

Farms such as those considered in this thesis operate on such a small scale that it is often 

not affordable, nor is it necessary, to have the type of support components used in large-

scale commercial units. Nonetheless, it is good practice to have dedicated spaces set aside 

for things like laboratory equipment, feed, chemicals, and equipment storage. Backup power 
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is an important aspect of RAS, and without it, the system is solely dependent on the national 

grid power supply.  

The following are recommendations for support components for a RAS (Timmons, Clark 

2009): 

 water quality testing equipment 

 storage for feed, chemicals, products 

 equipment storage 

 staff support 

 back-up generator 

 quarantine area 

 waste disposal 

 

2.7 Observations from the literature study 

 

From the literature study, a number of general trends are noted and discussed in this 

section. Aquaculture is an industry that is developing rapidly globally. It addresses a number 

of problems with the past and current methods of fish production, such as the depletion of 

fish stocks in the world‟s oceans, as well as the issue of food security.  

In theory, aquaponics is an attractive prospect, due to the advantages it presents over 

conventional aquaculture. The environment can be controlled, effluent is minimised, 

subsidiary incomes are generated, infrastructure can be shared and labour reduced.  

It is noted that South Africa is lagging behind the international trend to develop aquaculture. 

This might suggest that the prospect of aquaponics is very promising. 

However, it was observed that tilapia farming in South Africa is almost non-existent. The 

constraints of aquaculture and tilapia in South Africa reveal that it is a difficult industry to 

enter successfully. A number of aspects need to be addressed, including the feasibility of the 

operations, determining a market for the produce, and overcoming the constraints that 

hinder a potential venture. 

Owing to the type of aquaculture production type that aquaponics falls under, it features 

relatively high capital and operational costs, thereby requiring near-maximum productivity in 
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order to regain the capital costs. This high productivity increases the risk of the operation, 

and necessitates that this aspect be addressed. 

 

2.8 Feasibility models of interest in the literature 

 

This section investigates the research that is available in the literature in order to do a 

feasibility study on an aquaculture or aquaponics system. 

 

2.8.1 Current models 

 

There are a few models available that can be used to help determine the feasibility of an 

aquaculture or aquaponics venture. Spreadsheets are often used to perform the 

calculations.  

 

2.8.1.1 RAS course model (Timmons, Clark 2009) 

 

This model is designed to assist in performing “matchbox” calculations on RASs. The model 

does not go into a great deal of detail on the daily growth of the fish, nor does it look at the 

financial aspect of the system. The model is designed to help with the design and feasibility 

calculations of large-scale intensive RAS. The same costs and economies of scale do not 

apply to smaller-scale aquaponics systems such as those studied in the case studies. The 

authors themselves warn that even though every effort has been made from their part to 

ensure that the calculations are correct, they recommend that all the calculations be re-done 

by hand before using their model to base decisions on. 

This model is therefore not suitable for the purpose of determining the feasibility of 

aquaponics farms. Nevertheless, it is a useful model from which to reference a number of 

calculations. This model is used a number of times in the making of the feasibility model in 

this thesis. 
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2.8.1.2 Southern Region Aquaculture Center “Economics of Recirculating Systems” 

spreadsheet (Dunning, Losordo & Hobbs 1998) 

 

This model is similar to the previous model since it makes a number of assumptions on 

behalf of the user, and it is not possible to modify the model enough to incorporate the 

scenarios of the case studies. The authors of this particular model concede that there is no 

single correct way to design an aquaculture system. For this reason, it is not possible to 

design a single model that can be applied to all aquaculture ventures.  

As a result of the model making a number of assumptions, the model becomes too simple. 

The input data is simply entered in the sheet, then views the summary of the annual costs 

and returns to the system further down. This is not sufficient for the purpose of determining 

the feasibility of a number of fairly complex aquaponics systems.  

 

2.8.1.3 Model from Lawrence (G Lawrence 2010, pers. comm., 12 April) 

 

The model from Lawrence includes the required degree of complexity necessary to 

determine the feasibility of the aquaponics systems. The problem with the model is that it is 

not designed such that it can be used to determine the feasibility of an existing system. The 

model is designed such that it can be used it to specify a new aquaculture facility based on a 

predetermined amount of output that is to be produced. The model also lacks the ability to 

modify a number of the design parameters. 

As a result of the model being designed for the purpose of specifying a new farming 

operation, and not to determine the feasibility of existing farms, the model is not suitable for 

the purposes of this thesis. It is, however, the most comprehensive model found by the 

author.  

 

2.8.1.4 Aquaponics in conjunction with ethanol plants model (Hansen, Hardy 2008) 

 

The model used in this case has the appropriate amount of detail on the growth rates, 

production and financials, and aspects of it are used in this thesis‟ model. The scale of the 

project is not the same as those in this project, and changes must be made in that respect. 

The structure of the model is also useful for the purpose of replicating it in this thesis‟ model. 



33 
 

2.8.2 Results from investigating other feasibility models 

 

Research into the possibility of using other models for the purpose of determining the 

feasibility of the case study farms concludes that it is not possible to take an existing model 

and modify it to suit the needs of this thesis. Aquaculture and aquaponics systems are 

unique, and therefore a unique model must be designed for these case studies. The 

research uncovered a number of different methods for building models, and assisted the 

author in designing the model for this thesis.  
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3 The feasibility model 

 

The purpose of the model is to determine the feasibility of the case study farms.   

 

3.1 Methods used in designing model 

 

After researching the various models available in the literature, the decision was made to 

design a unique model. This model can then be modified to mimic the individual case 

studies. Using selected aspects from a number of models, a model is designed that is most 

suitable to the environment and situation in which the cases are found. 

The initial model was designed and implemented on a large number of Excel spreadsheets, 

and Visual Basic for Applications (VBA) programming was used to calculate a number of 

steps in the modelling process. The calculations became more and more complex, and the 

time taken to recalculate the model after changing any of the input parameters (on a fast 

computer with a quad core processor) was in excess of 25 minutes. This would have placed 

a time constraint on the sensitivity analysis, and would require that a number of computers 

be used in order to perform the sensitivity analysis.  

The help of an expert mathematical- and financial model builder (M Lapere 2010, pers. 

comm., 8 Aug) was acquired in order to verify that the model was in fact working, and that 

the output values were correct. The author and the model builder began performing some 

small verification calculations on another excel sheet, and it was found that some of the 

calculations that were programmed using VBA could be replicated on the Excel sheets by 

manipulating some values to arrive at the same results. The consequence of doing this is 

that the new model can compute the calculations in a fraction of the time that it took with the 

initial model.  

This advantage also makes the model suitable for use as a management tool by the farmers 

themselves. The input parameters of the revised version of the model are also completely 

variable, making the model highly flexible, allowing the author to perform a sensitivity 

analysis.  

The original model is still valuable as it uses a complicated step-by-step process to derive 

the necessary values; therefore, more information is available at any point in time. The 

original model also helped to make the new model more efficient, as it only becomes evident 
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after building a model which data is necessary and which is simply nice to have in order to 

perform verification checks. The outline for the old feasibility model is attached in Appendix 

B (figure 66). 

 

3.2 Model overview 

 

The flow diagram (Figure 9) below is a representation of the structure of the model designed 

in this thesis. 

Each entity has some input data, as well as a number of logical calculations associated with 

it. The entities are discussed in separate sections, where the reasons for the individual input 

parameters and calculations are motivated and referenced. The arrows in the figure 

represent the flow of data from one entity to the next. This structure helps to represent each 

aspect of the model separately, to demystify the model.  

The model is designed such that the inputs are stored in one location to prevent confusion 

and accidental errors. 
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There are a number of parameters that can be changed in the model. These parameters are 

grouped together and named input data (Figure 10 and 11).  
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Figure 9 Outline of the model developed in this thesis to 
determine the feasibility of the case studies 
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Figure 10 The input sheet of the model, showing input data (1), VBA buttons (2), input cells for the VBA 
calculations (3), graphs for assistance when testing input parameters (4), and a table showing the 
performance indicators for the system over a ten-year period (5) 
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Figure 11 The input parameters of the model 
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3.3 Calculations 

 

The following section discusses a number of calculations that are performed in this entity of 

the model flow diagram. The calculations are divided into groups in accordance with their 

functions. 

 

3.3.1 Pond re-stocking calculations 

This section explains the calculations regarding the re-stocking of fish into the tanks. 

 

The two ways of obtaining new fish with which to stock the ponds once the previous batch 

has been harvested are as follows. The first method is to have a separate broodstock pond 

where a number of fully-grown female and male tilapia breed new stock for the system.  

Alternatively, the new stock could be bought from a hatchery in the form of fingerlings every 

time restocking is required.  

Breeding the fish within the system eliminates the cost of having to purchase the fingerlings 

every time, but increases the labour and capital cost required for the system.  

Buying new fry every time the ponds are restocked poses a threat that a disease could be 

introduced into the system which infects not only the new fish, but the other fish in the 

system too. The fry could be placed in quarantine in order to monitor them for diseases, but 

this requires that they be separated from the existing fish in the system. This is a large 

constraint for small-scale farmers such as those considered in this thesis. 

 

3.3.1.1 Calculating number of fry needed 

 

The number of fish in a particular growth stage is calculated backwards using the final 

stocking density, system volume and harvest mass, as well as the mortality rates during the 

various growth stages. It is calculated in this manner in order to arrive at the desired stocking 

density at the end of the final stage. The number of fish in each stage is calculated iteratively 

to determine the required number in the previous stage. 

                                                       
 

                    
.....(4) 
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The loss of fish occurs as a result of mortality and culling.  

The final survival rate for the fish‟s life cycle is calculated as follows. 

                                                                              

The number of fish required to re-stock the system is derived from the following: The 

 maximum stocking density (kg/m3); 

 volume of water (m3); 

 final mass of the fish (kg); and 

 final survival rate of the stock (% of initial number of fish). 

                                  
                                

                                
...(6) 

Using the following input data, the calculations below are computed: 

 cost per fingerling; and 

 number of ponds. 

 

                                                                         .....(7) 

 

                                        
                      

               
        

 

                         
                         

               
            

 

                                                                  .............(10) 

 

                                   
                                

                         
...........(11) 
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....................(13) 

 

The formula below can be used to determine the accuracy of the predicted mortality rate of 

the fish life cycle. The actual harvested mass can be compared to the calculated values. 

 

                                                                             

                     .........................................(14) 

 

3.3.1.2 Broodstock calculations 

 

If the system breeds its own fish for re-stocking, the following calculations are used to 

determine the requirements of the system, as well as the broodstock. A step-by-step process 

calculates the requirements as follows. 

The number of fry required per batch is determined in the section above. This value is used 

to determine the number of eggs required, using the hatch rate.  

                        
                      

              
                           

Using the female fecundity as well as spawning cycle time, the weekly production of eggs 

per female can be calculated. 

                             
                                            

                                
...........(16) 

 

A method that can be used to calculate the number of eggs required per week to ensure that 

the batch of fry is approximately of the same age is shown. The user should specify how 

many weeks the oldest and youngest of a batch are allowed to differ by (G Lawrence 2010, 

pers. comm., 19 July). Using this information, the required production per week is calculated. 

                                  
                                 

                                                
...........(17) 
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The number of females required is calculated by dividing the required production by the 

production rate per female. 

                          

 
                                

                                           
                     

A breeding safety factor is used to ensure that the required production rate of fry is attained. 

                           

                                

                                           
                                        

A female to male ratio is used to specify the number of males required to fertilize the 

females.  

                         
                 

                 
.................................(20) 

 

Once the number of male and female broodstock fish has been determined, the feed costs 

can be calculated in the same manner as in the growth section, explained in the next 

section. The maximum feed rate is ordinarily in the region of 1.5 % body weight fed per day.  

The water volume required can be determined once the maximum stocking density for the 

broodstock has been decided upon.  

 

3.3.2 Growth 

 

The model calculates the fish growth based on information gathered on the species.  

The following aspects are calculated on a daily basis:  

 length 

 weight 

 feed cost 

The growth is calculated in the following manner.  All fish increase in length at linear rate 

(Timmons, Clark 2009). Their weight, however, increases by a cubic function relative to 

length. Figure 12 shows the length and weight of a fish relative to time (length and weight 

are normalised to show the relation). 
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Figure 12 Normalised graph showing the relation between the length and weight of fish 

 

 The length and weight are mathematically related, as shown in the following formula: 

       
       

   

 
 (Timmons, Clark 2009) .......................................(21) 

where: WT(g) = weight of fish in grams 

 K = condition factor 

 Lcm = length of fish in centimetres 

The weight and length of the fish on day one of its life, as well as on the harvest day, are 

input values. Using these values, the value of K can be calculated. The value of K is 

influenced by the age of the fish, sex, stage of maturation, season, fullness of gut, type of 

food consumed, amount of fat reserve and degree of muscular development (Barnham, 

Baxter 2003). The model developed in this thesis assumes that K is a constant, as cited by 

(Timmons, Clark 2009). This assumption is a limitation of the model, and is made so that the 

model can calculate the fish‟s weight at certain stages of its lifespan.   

   The formula for this calculation is as follows: 

  
         

      
..................................................................(22) 

For tilapia, this factor K usually ranges between 2.08 and 2.50. Once the condition factor is 

calculated, the weight at any given length can be calculated using the above equation.  
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The daily increase in length is calculated by taking the difference in length between the 

hatchling and harvest size fish, and dividing it by the number of days it takes to reach 

harvest size, as shown in the formula below. 

                          
                                 

                                  
.................................(23) 

The model calculates a number of elements relating to the growth of the fish on a day-to-day 

basis. The initial length of the fish (as specified in the input data) is used as a starting point, 

and each subsequent day the length is incremented in accordance with the calculated 

growth per day.  

                                                               ....................(24) 

Using the equation above, the weight of the fish on the corresponding day can be calculated. 

The amount of feed fed on day(t) is determined by taking the product of the feed conversion 

ratio  (FCR) and the difference in weight between day(t+1) and day(t). 

                                                  

    
              

                    
 ............................................(25) 

 

3.3.3 Staggering production 

 

Staggering production is a method of staging the production of the aquaculture component 

in such a way that the tanks contain batches of fish that are of different ages. A delay of a 

number of weeks between the ages of the various batches is planned. Staggering production 

is considered to be advantageous for a number of reasons (Rakocy, Masser & Losordo 

2006). This method helps to optimise the utilisation of the fish-rearing tanks. The staggering 

of production also assists in optimising the production in another manner. This method of 

production decreases the variation of daily feed input by staging various batches of fish at 

various stages in time. This is advantageous to the hydroponic component of the system, 

where a stable level of nutrient loading is desired. Unstable nutrient loading levels could 

cause the plants to suffer from nutrient deficiencies. Managing the stock in this manner also 

results in more regular harvests compared to a situation where all the tanks are stocked with 

fish at the same time. 
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If a system breeds its fingerlings in-house, then moving the fish from one tank to the next at 

the most favourable times will be advantageous. The model has a separate functionality 

where it is possible to optimise the production staging of the fish batches. The optimal times 

to transfer the fish to a larger tank can be determined. The model shows the stocking 

densities at the start and finish of each production stage. This is used to determine the 

optimal time to transfer the batch of fish. It should be noted that most of the farms in the 

case studies have three or four large tanks, and no smaller tanks where fish could be bred or 

grown. In these cases it is evidently not possible to optimise the movement of fish from one 

tank to another.  

The staggering offsets each batch of fish by a pre-determined number of days. This results 

in the batches reaching harvest size at time intervals equal to the aforementioned offsets. 

 

3.3.4 Biofilter design calculations 

 

The purpose of the following calculations is to verify that the system‟s biofiltration component 

has sufficient capacity to filter the water under the operating conditions specified by the input 

parameters. Insufficient biofiltration capacity would result in the buildup of the TAN in the 

system, and the subsequent deterioration of the water quality. 

A number of the input parameters are variable, and for this reason, three scenarios are 

calculated in each step. A minimum, maximum and expected scenario is calculated. The 

variation in the input parameters is a result of the variation in daily feed, as well as the 

design parameters that are proportional to the feed. These design parameters are shown in 

figure 13. 

 

 

Figure 13 The relation between feed rate and design parameters (Timmons, Clark 2009) 

 



46 
 

The steps required to design a biofilter are explained in section 2.6.4.3 earlier. 

The first step is to calculate the dissolved oxygen requirements of the system. The required 

oxygen is calculated based on the amount (in kg) of oxygen consumed by the system per kg 

feed used in the system. 

A good starting point for the amount of oxygen required for a system is 1kg oxygen per kg 

feed used in the entire system (Timmons, Ebeling 2007). This includes oxygen used by all 

chemical reactions that consume oxygen in the system, including bacterial activity. 

The contribution of oxygen consumption by the fish‟s metabolism is often estimated at 250 g 

oxygen per kg feed (Timmons, Ebeling 2007). In certain biofilter designs, the ambient 

atmosphere will supply sufficient oxygen for the nitrification process, as well as for any 

heterotrophic bacteria. If not, additional oxygen must be added to the system in order to 

ensure that the nitrification process is not constrained by dissolved oxygen levels. 

The dissolved oxygen requirement is calculated as follows: 

                          
    

   
  

                                                                                 .........................(26) 

 

The average daily feed rate is calculated using the daily feed calculations performed in the 

biological growth model.  

 

Water flow requirement: assume that dissolved oxygen (DO) level in the culture tank is 

5mg/L(Timmons, Ebeling 2007). This measurement is taken from the effluent water, as this 

is the water that has the lowest DO level.  

Most of the farms examined in the case studies have aerators in the culture tanks. This 

provides an additional source of oxygen to the oxygen provided by the influent water. 
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Table 2 Oxygen saturation levels in fresh water at sea level atmospheric pressure (Masser, Rakocy & 

Losordo 1999) 

temperature 
(°C) 

dissolved oxygen        
(mg / L) 

10 10.92 

12 10.43 

14 9.98 

16 9.56 

18 9.18 

20 8.84 

22 8.53 

24 8.25 

26 7.99 

28 7.75 

30 7.53 

32 7.32 

34 7.13 

36 6.95 

 

 

The DO level of the influent water to the culture tank should be 7.75 mg/L (Timmons, Ebeling 

2007) (table 2).  Using the mass balance equation from the aforementioned reference, the 

flow rate can be calculated. 

          
                         

    
   

 

             
  

 
                        

  

 
          

 
     

        
 

     

    
.................(27) 

 

The mass of TAN produced by the fish in the process of metabolising is calculated by 

multiplying the amount of TAN produced per kg by the feed rate. 

                       
               

       
   

           

   
) .............................(28) 

 

Using the areal TAN removal rate specified by Timmons (Timmons, Ebeling 2007), the 

surface area can be calculated using the following formula: 

                           
                

      

   
 

                  
    
      

 
 

     

   
....................(29) 
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The volume of biofilter media required is calculated by dividing the surface area required by 

the specific surface area of the biofilter media. 

                                
                         

                              
  

   
.................(30) 

 

3.3.5 Hydroponic component 

 

The model calculates the production capacity of the hydroponic component. The surface 

area of the farm‟s hydroponic component is determined at the site visits.  

 

                                                                
                  
    

                   .................................................(31) 

 

The productivity and value of the produce from the hydroponic component is calculated as 

follows. The production per square metre of the various plants is obtained from the reference 

below. 

                       

                     
  

                                            .............(32) 

                                                            
 

  
 .............(33) 

 

The production rates for the hydroponic component of an aquaponics system at the UVI are 

shown in table 3.  
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Table 3 Production and economic data from the UVI aquaponics system (Rakocy et al. 2003) 

  
annual production kg / 

m² 
value R / 

m² 

tomatoes 29.295 10.61 

cucumbers 60.544 13.69 

eggplant 11.230 8.20 

genovese basil 30.272 287.00 

lemon basil 13.183 139.61 

osmin basil 6.836 81.85 

cilantro 18.554 243.50 

parsley 22.948 328.78 

portulaca 17.089 267.87 

 

3.3.6 Calculations to determine cash flows 

3.3.6.1 Depreciation 

 

Depreciation is non-cash deduction which occurs in the profit and loss statement. As a 

result, depreciation has cash flow consequences because it influences the tax bill. The 

manner in which depreciation is computed for tax purposes is thus the relevant manner to 

calculate depreciation for feasibility study decisions.  

The various components that comprise the aquaponics system depreciate at different rates, 

and should be calculated as such. By researching the depreciation rates used in other 

aquaponics business plans in the literature (Hansen, Hardy 2008), the depreciation for the 

components in the case studies are determined.  

The annual depreciation is calculated by dividing the value of the asset by the lifespan of the 

asset. 

                    
              

                 
........................................(34) 

 

3.3.6.2 Capital expenditure 

 

Using the depreciation rates from the section above, the point in time when an asset needs 

to be replaced can be determined. The cost of replacing the asset is incurred to the system 

at such time. 
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3.3.6.3 Operating expenses  

 

The operating expenses are divided into direct production costs, and overheads costs. The 

direct (or variable) costs are feed cost for the growout stock, costs for additives, chemical 

testing equipment, organic pesticides, seedlings, and either feed cost for the broodstock, or 

fingerling restocking cost (depending on the design of the system).  

Overhead costs (otherwise known as fixed costs) are insurance, electricity, capital 

purchases, labour and maintenance. 

Normally labour is a cost for these systems, but in the case studies the owners perform the 

labour tasks themselves. The model has an input for labour cost but this value is set to zero 

for the case studies. 

 

3.3.6.4 Sales 

 

The sales are calculated by determining the times when the products are ready for sale. The 

mass of fish harvested, as well as the selling price, are used to calculate the revenue of the 

aquaculture component. The revenue generated from the hydroponic component of the 

system is calculated using the production rates from table 3, as well as the selling price. 

 

3.3.7 Cash flow 

 

The cash flow statement incorporates the operating expenses as well as the sales sheet. 

Loan repayments, as well as loan interest, is also deducted from the cash flow. Inflation of all 

the elements is factored in at this stage. Some of the elements which are expected to have 

inflation rates that are expected to vary from the average inflation (such as feed cost and 

electricity cost) have separate inflation rates that can be adjusted at the input data. 

 

 

 



51 
 

3.3.8 Profit and loss statement 

 

The profit and loss statement follows a specific format. The gross profit is calculated by 

deducting the direct cost of sales from the income value. Net profit before income and tax is 

calculated by deducting overhead costs, as well as depreciation. Deducting interest provides 

the net profit before tax. Deducting tax provides the net profit. 

 

                                ..........................................(35) 

 

                                                                                 

 

                                                                   ..............(37) 

 

                                                                     

 

3.3.9 Financial indicators 

 

 A number of financial indicators are used in the feasibility model. The Net Present Value 

(NPV) and Internal Rate of Return (IRR) are two of the most popular financial indicators 

used in financial management. The IRR, however, is a not suitable indicator for ventures 

such as these as a result of the nature of the cash flows that the systems experience. The 

financial indicator that is used the most in this thesis is therefore the NPV. Appendix C 

contains a detailed description of the financial indicators used in this thesis, describing the 

method of calculation, advantages and disadvantages of each. 
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3.4 Testing the model 

 

The final model to be used for the feasibility studies has been rigorously tested in order to 

ensure that there are no calculation errors in the model logic. The model outputs have been 

compared to previous models designed by the author to ensure the validity of the results. 

Numerous calculations were also done by hand and compared to the model outputs. Due to 

the complexity of the model, errors were found and corrected. Finally, the model was verified 

by an industry professional from the aquaculture sector who has vast experience in 

feasibility study modelling (G Lawrence 2010, pers. comm., 19 July), as well as an industry 

professional who specialises in mathematical and financial model building (M Lapere 2010, 

pers. comm., 8 August).  
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4 Case study on existing aquaponics farms 

 

This section details the farms in the Garden Route area that will be used as case studies in 

order to study and model the current practices of the aquaponics farmers in the region. 

Information on the climate and demographics is supplied, as these attributes form part of the 

external environment in which the farms find themselves.  

 

4.1 Introduction and methods to case study  

4.1.1 Location 

 

 

 

Figure 14 The location of the case study farms, with an exploded 
view showing the location of the individual farms  
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The case study farms are situated in a coastal strip of 150km long between Sedgefield and 

Plettenberg Bay, all within approximately 10km from the coast (figure 14).  

This area is near the border between the Western- and Eastern Capes. Both provinces show 

promise for the development of aquaculture (Hinrichson 2007, Britz 2008). 

 

4.1.2 Climate 

 

The Garden Route has a temperate climate, with an average rainfall of 73mm per year. 

Monthly rainfall during the summer averages 75mm, with winter at 71mm. The region 

receives rain throughout the year, yet sunny days are also common throughout the year. 

Summer features warm to hot days with cool evenings. Winter is cool to warm during the 

day, with cold evenings. In summer the daytime and night time averages are 22 and 14 °C 

respectively, whilst the winter averages are 19 and 10 °C (Coastal & Environmental Services 

2009).  

Since December 2008, the region has been experiencing a drought and in 2009 the region 

experienced its worst drought conditions in recorded history (Life Beyond Our Rivers 2010). 

Water restrictions are still in place in October 2010, and are expected to remain in place for 

the foreseeable future until the drought subsides (Oelofse 2010).  

 

4.1.3 General  

 

About 60,000 people live in the 1,059 km² of Knysna's municipal area. The majority of the 

population speaks Afrikaans; English and African languages are also widely spoken in the 

area. Unemployment in the area is 19 %, indicating that there is no shortage of labour in 

order to potentially operate the systems. 

Another factor that should be taken into account when performing a feasibility study in the 

area is the abundant availability of scrap wood. The area has a large forest plantation 

industry, and the subsequent harvesting and refining of the wood produces a large amount 

of scrap wood as a by-product. This wood is suitable for burning in wood-powered boilers, 

and can be used to heat water in an aquaponics system.  
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4.1.4 Data collection methods 

 

The case studies of the farms are conducted in order to gather information on the current 

practices of aquaponics farmers in South Africa. The cases are approached in the following 

manner. The farms in the area are identified as being of interest to the investigation, and 

contact is made with the farmer. A meeting is then arranged with the farm owner. This 

meeting takes place at the site of the aquaponics system, in order to gather the maximum 

amount of information. A structured interview is then undertaken with the system operator, 

which in these cases is the investor themselves. The farms are revisited a number of times 

as the thesis progresses to gather information as needed. All information is documented to 

be used in the feasibility model.  

The farms that will be used as case studies for the thesis are described below.  They have a 

number of aspects in common, namely: 

 the systems are housed in one or more greenhouses containing the fish tanks, 

hydroponic growbeds, pumps and plumbing used in the system; the tunnels have 

approximate dimensions of 30m X 16m X 4m; 

 the species farmed is tilapia (O. mossambicus); a mixed-gender population is 

farmed; 

 the farmers use fish feed supplied by Aqua-nutro (Pty) Ltd (Malmesbury, South 

Africa); 

 the water in the system is heated by either an electrical heat exchanger, boiler, 

geyser element, or solar water heating device or a combination thereof; and 

 the fish are grown in circular wire-mesh ponds with a plastic liner. 

 

4.2 Case study farms 

 

A brief comparison of the case studies is shown in table 4, in order to give the reader a 

summary of the farms.  
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Table 4  A comparison of some key aspects of the case study farms 
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4.2.1 Farm 1 

 

Farm 1 was constructed around 13 months ago. The capital cost of the system is estimated 

by the owner at R100 000. This cost is rather low when considering the size of the system; 

the reason for this is that the farmer oversaw the construction of the system himself, and 

managed the costs well. If the construction were to be outsourced, the cost would likely have 

increased by over 100 %. The hydroponic growbeds double as the system‟s biofilter 

component (figure 15). 

 

 

Figure 15 A representation of the components of farm 1 

 

The system consists of two tunnels (figure 16), one containing the hydroponic component 

(figure 17), and the other the aquaculture component (figure 18).  

 

 

Figure 16 Exterior of farm 1 greenhouses 
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Figure 17 Interior of the hydroponic greenhouse on farm 1 

 

Figure 18 Interior of the aquaculture greenhouse on farm 1 

 

The water in the system is heated using solar water heaters. The heater is composed of two 

panels containing hundreds of thin black pipes (figures 19 and 20) through which the water 

flows and is heated. 

 

Figure 19 Solar water heater panels 
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Figure 20 Close-up of the capillary pipes that comprise the solar water heaters 

 

Additional heating is provided by a boiler powered by wood fire; the boiler is used during 

periods of extreme cold (figure 21).  

 

 

Figure 21 Wood-fire powered boiler used for heating system water on farm 1 

 

The hydroponic component of the system is constructed in a cost-effective manner; the 

growbed is situated on ground level, and is made of concrete and bricks as illustrated in 

figure 17. 

The water recirculating system consists of a regular pool pump with sand filter, controlled by 

a programmable logic control unit. The sand filter is backwashed daily, and the sand is 



60 
 

loosened up by hand in order to prevent clogging and to prevent the water short-circuiting 

the filtration process. The backwashed water is stored in an outside pond. The nutrient-rich 

water is then used to irrigate crops grown in soil nearby. 

The tank arrangement in the aquaculture tunnel is not efficient in terms of space utilization. 

The initial design incorporated a few hydroponic growbeds in the fish tunnel as well, but that 

was abandoned in favour of a number of smaller fish tanks. 

 

4.2.1.1 Preliminary result on farm 1 investigation 

 

At present the farmer is not operating the boiler in order to heat the water. This has caused 

the water temperature to decrease considerably during the colder winter months, thereby 

causing the growth rate of the tilapia to decrease.  

 

4.2.2 Farm 2 

 

Farm 3 consists of three greenhouse tunnels, at cost of around R250 000 for the investors. 

The first tunnel contains four 28kl grow-out ponds (figure 22).  

 

 

Figure 22 Interior of the hydroponic greenhouse on farm 2 
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Figure 23 Interior of the aquaculture greenhouse on farm 2 

The second contains four gravel growbeds (figure 23), manufactured from pine wood and 

welded plastic, in the same way that the raft hydroponics on farm 2 are constructed. The 

third tunnel houses D-ended raceways in which algae are to be grown (figure 24). The 

construction of the third tunnel is not yet completed, but the plan is to grow algae in the 

effluent fish water, then concentrate the algae in a settling pond, and finally strain the algae 

out. The algae type spirulina (Arthrospira spp.) will be grown in the raceways, and sold to 

companies that process it into a tablet form for consumption.  

 

 

Figure 24 Interior of the algae production greenhouse on farm 2 (in the construction stage) 
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As shown, the solids removal, biofiltration and hydroponic subsystem components on farm 2 

are combined (figure 25).  

 

Figure 25 A representation of the components of farm 2 

 

Farm 2 is the largest-scale farm of the case studies, and has the potential to be a successful 

venture, as the system produces a number of products. The investors are considering 

expanding the farm with an additional two and a half standard size greenhouses if the initial 

system is successful. 

 

4.2.2.1 Preliminary result on farm 2 investigation 

 

The fire-powered boiler is the only source of heat for the system. This makes it difficult to 

maintain the water temperature at a consistently high range during the colder months. A 

compromise will have to be made between allowing the water temperature to fluctuate, 

buying expensive automation equipment, and increasing labour requirements.  

  

4.2.3 Farm 3 

 

Farm 3 was constructed 18 months ago, and cost the investor R250 000. The system is 

housed in a single greenhouse tunnel, with four large grow-out tanks (figure 26), and four 

raft hydroponics growbeds (figure 27).  
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Figure 26 Two of the four growout tanks on farm 3 

 

Figure 27 Raft hydroponics growbeds on farm 3 

 

The hydroponic growbeds are constructed of pine wood and welded plastic, and the solids 

capture device and biofilter are constructed from concrete; the material type and 

construction of these components contributes to the high capital cost.  

Figure 28 shows the components of farm 3. None of the components are combined in this 

system. 
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Figure 28 A representation of the components of farm 3 

 

4.2.3.1 Preliminary result on farm 3 investigation 

 

The farmer experienced little success with the operation of the system. The fish growth rates 

were not as predicted, possibly as a result of problems with the water quality and 

temperature. The raft hydroponics component experienced problems with plant growth, as 

well as pests. The organic pesticides recommended to the farmer apparently did not remedy 

the problem. The monthly electricity bill is allegedly in the region of R1500 to R1700, which 

is an exceptionally high operating expense for a system of this size.  

Upon the most recent visit, it was noted that the farm had shut down and was selling its 

assets in order to salvage some of the investment costs. 

 

4.2.4 Farm 4 

 

Farm 4 is the oldest of the case studies, and has been in operation for three years. It was 

built at a cost of R200 000, and consists of one greenhouse tunnel with four 7kl ponds, and 

24 six-metre gravel growbeds (figure 29 and 30). The system combines the solids removal, 

biofilter, and hydroponic components (figure 31). 



65 
 

 

Figure 29 Interior of farm 4 greenhouse in June 2007 

 

Figure 30 Interior of farm 4 greenhouse in June 2010 

 

Figure 31 A representation of the components of farm 4 
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The relatively high capital cost is attributed to the outsourcing of the construction, and the 

use of expensive materials and construction methods.  

This aquaponics system is unique from the other case studies, in that it incorporates an 

additional trophic level of integrated farming using poultry. The system incorporates 300 

chickens (Gallus domesticus), housed in mesh cages suspended over plastic sheeting. The 

chickens‟ droppings accumulate on the sheeting; thereafter, the sheeting is replaced, and 

the old sheet with droppings is put in the sun to dry. Once the droppings are dry, they are 

filtered through a fine mesh screen to break the droppings into smaller pieces. The 

droppings are then placed into the growout tanks where it acts as a fertilizer for algal 

production and generates algal biomass, which the fish feed on. This process integrates the 

chicken component into the aquaponics system. The use of chicken droppings as fish feed 

eliminates the cost of fish feed from the operating costs. The disadvantage is that fish growth 

rates, as well as water quality, are adversely affected by the change from commercial fish 

feed to chicken droppings.  

 

 

Figure 32 One of the four tanks on farm 4, showing pump, heat pump and suspended chicken cages 

 

Vegetables produced in the hydroponic component that are not suitable for sale are fed to 

the chickens, saving further on feed costs. Another process that takes place is the growing 

of algae using the system‟s water. Algae are grown in trays outside of the tunnel in the sun. 

The algae are then strained out of the water, dried, and fed to the chickens. 
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4.2.4.1 Preliminary result on farm 4 investigation 

 

The plants in the hydroponic component grow exceptionally well, as a result of the high 

concentration of nutrients in the water. In terms of suitability for the aquaculture component, 

however, the water quality is not ideal. The decomposing solids in the water consume 

oxygen and produce compounds (e.g. hydrogen sulphide) that are harmful to the fish. It is 

not possible to stock fish in moderate densities in water of this quality.  

Organic pesticides are used in the system to prevent the hydroponic crops from being 

damaged. 

 

4.2.4.2 Note: 

 

The farm owner has made a projected income statement of his own which does not 

correspond with those made in this thesis. It is possible that the farm owner has inflated his 

income figures in order to make it seem as though the system is more profitable than it is. 

The farm owner is building very similar systems for other investors, which is where the 

suspicion of incorrect projections stems from. 

 

4.3 Additional case study 

 

Another aquaponics system is also investigated in the same manner in order to gather some 

more information. However, this system is not designed in the appropriate manner or to the 

correct scale to be suitable for commercial use. The feasibility of this system, referred to as 

system 5, is not determined. 

System 5 is constructed in a similar way to farm 3, but on a much smaller scale. The 

produce of the system is used by the owners for personal consumption, and for use in their 

guest house. The system is also used as a training facility where people can do a course in 

aquaponics, and gain hands-on experience. 
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4.3.1 System 5 

 

System 5 was constructed around eight months ago, at a cost of R60 000. The system 

consists of a small greenhouse tunnel which houses one of the ponds, and three short 

growbeds. Shade cloth covers the other pond and three growbeds (figure 33 and 34).  

 

 
Figure 33 Section of system 6 enclosed in greenhouse showing a tank and growbeds 

 
Figure 34 Section of system 6 covered with shade cloth showing a tank and growbeds 
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4.3.1.1 Preliminary result on system 6 investigation 

 

This case study shows that the cost of the system per unit produce decreases considerably 

when the scale of the project is increased. At the initial visit it was noted that the plant growth 

in the growbeds was struggling.  

The most recent communication with the system owner has shown that the system is 

operating at extremely low productivity levels during the winter months. This is attributed to 

the lack of heating in the system, as well as the poor insulation of the section of the system 

covered in shade cloth. The fish feeding rate has dropped drastically as a result of the low 

water temperatures. The plant growth has also deteriorated, with a number of the plants 

dying. 
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5 Feasibility study 

 

In order to investigate the feasibility by modelling the case study farms, the necessary 

information is gathered and stored in Microsoft Excel. A separate feasibility study is done on 

each of the case study farms. The model contains all of the input parameters of the farms, 

as well as step-by-step calculations. These calculations are based on the literature study, 

available scientific research, and personal communication with farmers, aquaculture and 

aquaponics consultants and experts. Appendix D lists and describes the people from whom 

information was obtained.  

According to research (Rakocy, Hargreaves 1993a), the recommended sequence to 

determine the feasibility of an aquaculture operation is a follows: 

 calculate the growth projections of the fish species, hence calculating the system 

requirements; 

 calculate the capital cost of the system; 

 calculate the operational cost of the system;  

 project  the sales; and 

 combine the above calculations into financials in order to determine whether the 

venture will be financially viable. 

This sequence is also recommended by an industry professional (G Lawrence 2010, pers. 

comm., 12 April). The purpose of this study is to model the current situation that the farmers 

find themselves in. For this reason, it is not necessary to calculate the system requirements 

and capital cost of the system. However, for the sake of completeness, the system 

requirements are calculated in the model in order to verify that the systems are suitable to 

the production rates specified. 

The capital cost of the system is supplied by the farmer and is not investigated further. 

 

5.1.1 Reservations on the case study predictions 

 

A number of assumptions are made in order to perform the calculations on the feasibility of 

the farms. It is necessary to make assumptions to focus the study on the actual feasibility. If 

no assumptions are made, the model would have to take into account every scenario that 

could possibly occur. 
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Assumptions: 

 The farmers are farming an all-male stock of fish in their ponds. This assumption is 

made so that the fish‟s growth rates can be predicted more accurately (Abernathy, 

Lutz 1998). As explained later in section 5, mixed-sex tilapia do not grow uniformly, 

which significantly retards and complicates the process of producing a uniform batch 

of market-size fish. It is a reasonable assumption that the farmers farm sex-reversed 

all-male tilapia that are either bought or bred themselves. 

 The expected production rates are used for this system. In some cases this may be 

the best-case production rate, such as in the case of the bio-security issue described 

below. Rational calculations have been performed to ensure that the system is 

capable of handling the production rates specified. The reader may be inclined to 

think that the predictions are a bit optimistic, and in some cases rightfully so. It was 

established fairly early on in the investigation and modelling process that the farms 

are not foreseen to be profitable.  

Therefore, in order to convincingly demonstrate that they are not economically 

feasible, the best case scenario should be studied. When considering the near-ideal 

model later in the thesis, risk factors and other considerations are taken into account. 

 Major bio-security risks are not accounted for in this model. A bio-security risk could 

adversely affect the fish‟s growth rate and mortality. However, a realistic mortality 

rate is accounted for in the model. 

 Labour obligations are assumed to be undertaken by the farm owner. This model is 

theoretically a realistic model of the current state of the case studies. Therefore, as in 

reality, the system does not incur any costs related to labour in the system. The 

owner must take into account the opportunity cost of spending their time on the 

system. In reality, a cost should be incurred for labour in the system, but for the 

purpose of the case studies the labour cost will be set to zero in the model. 

 No cost is incurred to the system for the land which it occupies. In the case studies, 

the systems are located on land owned by the farmer. The opportunity cost of using 

the land for this purpose should be taken into account by the farmer. 

The feasibility model used in the case studies also does not take into account any risks that 

the systems might be exposed to. Not taking into account any risks can have repercussions 

on the actual performance of the system. A number of risk factors can have detrimental 

effects on the performance of the system.  

The inherent risk of the aquaponics ventures also affects the cost of capital. The higher the 

risk of the venture is perceived, the higher the cost of capital will be. Regardless of where 
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the investment funds are raised, the investor will demand a higher rate of return on their 

investment if the risk rate is higher (Firer et al. 2008). 

 

5.2 Methods of determining feasibility 

 

One of the first results that should be studied is whether the operation is generating positive 

or negative cash flows. Financial indicators can also be used to help determine the 

feasibility. 

 

5.2.1 Cash flows and NPV 

 

Although a number of calculations are performed in the model, and a number of 

performance indicators are available for analysis, only two figures per farm are shown, so 

that the comparison process does not become tedious. A more complete set of figures and 

financial indicators for the case study farms are provided in Appendix E.   

The predicted net cash flows for the systems for a 10 year period are an important set of 

indicators of the performance of the farms (figures 36 to 39). A number of performance 

indicators are calculated in the model, but the NPV is the performance indicator that is used 

in this section. The NPV is included as it is the performance indicator that is the easiest to 

evaluate and to compare the farms.  

 

5.2.2 Results of the feasibility study 

 

The cash flows of farms 1 to 4 are shown (figures 35 to 38). The variations to the upward 

trend on various years are attributed to the high capital purchases costs incurred on those 

years. As stated in the feasibility model section, the various components of the system 

depreciate at different rates, and must be replaced accordingly.  

Farm 1 produces positive cash flows on the majority of the years studied (figure 35).  
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Figure 35 Net cash flow of farm 1 

 

Farm 2 also produces positive cash flows on the majority of the years studied (figure 36). 

However, these positive cash flows are smaller than those of farm 1 relative to the 

respective initial capital costs. 

 

 

Figure 36 Net cash flow of farm 2 

 

Farms 3 and 4 produce negative cash flows on the majority of the years studied (figures 37 

and 38).  
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Figure 37 Net cash flow of farm 3 

 

 

Figure 38 Net cash flow of farm 4 

 

The NPVs of the case study farms are shown for a 10 year period (figures 39 to 42). Farm 1 

generates a positive NPV during the study period (figure 39).  
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Figure 39 Net present value (NPV) of farm 1 

 

Farms 2, 3 and 4 produce negative NPVs over the 10 year study period (figures 40 to 42).  

 

 

Figure 40 Net present value (NPV) of farm 2 
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Figure 41 Net present value (NPV) of farm 3 

 

 

Figure 42 Net present value (NPV) of farm 4 

 

5.2.3 Discussion on the feasibility study 

 

The results show that farm 1 is the only farm generating an accumulated positive cash flow 

at any stage during the 10 year study period. The best case scenario is used (section 4.1.4); 

along with other aspects, labour and land rental is not accounted for. Thus, even though all 

these factors are in favour of the farms being successful, the figures show that farms 2 to 4 

would make for highly undesirable investments.  
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However, the NPV for farm 1 becomes positive at some stage in year 5. This also signifies 

the discounted pay-back period. 

The revenue received from the algae production tunnel on farm 2 is not taken into account in 

the model as it is difficult to estimate the value thereof. The component is expected to 

produce an income when built; however, it is extremely unlikely that the additional revenue 

of this component will cause the system to become economically viable.  

The contribution of the poultry component in farm 4 produces an additional revenue stream, 

but the entire system still produces negative cash flows (figure 39).  

 

5.3 Analysing the case studies 

 

The following section analyses the farms by varying the parameters in order to determine 

what changes are needed in order to make the last 3 farms successful, and also which 

parameters would cause farm 1 to generate negative cash flows. A number of different 

situations are considered in this analysis. These situations are selected as a consequence of 

their relevance to the feasibility of the farm. The decision to perform the sensitivity analysis is 

motivated whenever an analysis is performed to state the relevance of the analysis to the 

study.  

 

5.3.1 Sensitivity analysis 

 

Sensitivity analysis is defined as an investigation of the effect of changing a variable  

(e.g. selling price) on a performance measurement (e.g. NPV).  

The sensitivity analysis performed in this section addresses the “Technical” and “-Economic” 

aspects of the feasibility study. The parameters that are changed in this analysis include 

both technical aspects such as growth rates and FCRs, and economical aspects such as 

market prices. All of the parameters have an effect on the economical aspect of the case 

studies, as reflected in the financial indicators. 
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5.3.1.1 Profitability index 

 

The profitability indexes for the four case studies are shown below. Profitability index is 

closely related to the NPV indicator (Appendix C), and is used in this case to compare the 

farms. A comparison of the profitability of the farms shows the variation in performance 

according to the profitability index performance indicator (figure 43).  

 

 

Figure 43 Profitability Index of the farms  

 

5.3.1.2 Varying the capital cost parameter 

 

A calculation that could provide an explanation for the poor performance of some of the 

farms is to determine the effect on a financial indicator after setting each farm‟s capital cost 

to a lower value. As such, the farms‟ productivity in relation to capital cost can be determined 

and compared. 

The reason for performing this analysis is motivated by comments made by some of the 

farmers. They claim that they are going to apply for a government rebate on the capital cost 

of their systems, and that if approved, the government would pay back 70 % of the capital 

cost of the system.  
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The capital cost of farm 1 is left unchanged to be used as a reference point. The effect of 

reducing the capital costs of the remaining three farms by 70 % on the profitability index is 

shown (figure 44). 

Figure 44 shows that the performance of farm 2 increases substantially as a result of the 

decrease in capital cost. The performances of the remaining three farms are comparable to 

that of farm 1 without having reduced the capital cost of that farm. 

 

 

Figure 44 Profitability of the farms with the capital cost of farms 2,3 and 4 reduced by 70 % 

 

5.3.1.3 Note on this test 

 

The investigation above is based on a hypothetical situation where the farmers receive 

assistance from the government in the form of a rebate on their capital costs. The author 

could find no evidence in the literature or from any government source that there are policies 

of such a nature in place. The author is therefore neither denying nor agreeing that this 

scenario may become a reality. The test shows, however, that were the farmers to receive a 

rebate, their chances of success would increase notably (Appendix F). 

For the following number of tests, farm 1 is used in the analyses as it is the farm that shows 

the most potential to be successful. Farms 2, 3 and 4 produce negative cash flows under 

best-case scenarios, and will therefore not be investigated further. 
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5.3.1.4 The effect of changing the selling price of the fish 

 

The effect on the NPV at year 10 of varying the selling price of the fish from R15 to R30 per 

kg is shown below. This shows the system‟s sensitivity to the selling price, and also shows 

the break-even selling price. 

 

 

Figure 45 Net present value (NPV) of farm 1 at 10 years with varying selling price 

 

The relationship between NPV and selling price is linear in the model (figure 45). The break-

even selling price is calculated as R19. 

 

5.3.1.5 Effect of varying the growth rate of the fish on the NPV 
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such as growth, operating cost and such. If these values become available through future 

research, the model can accommodate them. 

The growth rate of the fish depends on a number of factors, such as water temperature, feed 

quality, water quality, species and management practices. Therefore, it is essential that the 

effect of varying the growth rate on the performance of the system is identified. 
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Figure 46 Net present value (NPV) of farm 1 at 10 years with varying growth rate 

 

Figure 46 shows that the NPV will decline to zero if the days taken for the fish to reach 

harvest size reaches around 500 days. There is a relatively steep gradient on the NPV vs. 

growth rate graph where the days taken are in the 300‟s, indicating that the system 

performance is particularly sensitive to the growth rate in this region (figure 46). 

The use of faster-growing species could make farms that are currently not economically 

viable, to become viable. This is demonstrated in section 6, where the NPV over 10 years is 

shown for a near-ideal system with a genetically superior species. 

 

5.3.1.6 Effect of varying the daily operating costs on the NPV 

 

A common cause of business failure is when a business runs out of cash (Richardson, 

Nwankwo & Richardson 1994). An unexpected increase in the operating costs of a system 

could cause the business to go under. This analysis looks at the sensitivity of the system to 

an increase in daily operating expenses. 
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Figure 47  Net present value (NPV) of farm 1 at 10 years with varying operating costs 

 

The system performance is very sensitive to the daily operating costs. If the operating costs 

were to be increased by a mere R65 per day, the NPV would be reduced to zero (figure 47).  

The current model of farm 1 used above does not account for any labour or land rental 

costs, which makes the resulting sensitivity to the daily operating cost a point of concern. A 

recommendation to designing a near-optimal system would be to make the system less 

sensitive to an increase in daily operating costs. This is discussed later in the thesis. 

 

5.3.1.7  Effect of varying the capital cost on the NPV 

 

This calculation will determine how the financial performance of farm 1 compares to the 

other farms when its capital costs are increased to levels near to those of the other farms. 
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Figure 48 Net present value (NPV) of farm 1 at 10 years with varying capital cost 

 

Figure 48 shows that the break-even capital cost is R220 000. Farm 1 is in a good position in 

this respect, as the capital cost is far lower than the break-even value.  

 

5.3.2 Sensitivity analysis changing two parameters simultaneously 

 

The study now looks at the effect of changing two parameters at the same time to establish 

an optimal point for the parameters. The reasoning behind this analysis is that varying one 
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The feasibility model has a VBA program built in that is capable of comparing the effect of 

changing two parameters at the same time. The VBA code is attached in Appendix G. The 

program can generate three-dimensional graphs of a performance indicator under different 

input parameters. Using the graphical representation, locations can be identified where the 

performance indicator is at an optimal point; the input parameters at that point can 

subsequently be identified. 

The model requires a range for each of the input parameters. The number of data points to 

be calculated in the range should be specified for both parameters. The resolution of the 

graph can be increased to display more information by increasing the number of data points 

to be calculated in the range. This can be accomplished by setting the number of steps in-

between the two endpoints of the VBA inputs to a higher value. This will, however, increase 

the time taken to calculate the results. 
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5.3.2.1 Sensitivity of NPV to growth rate vs. FCR/feed price 

 

In RASs in Louisiana, it was seen that moderate improvements in growth rate increased the 

profitability of the system to a greater degree than large improvements in FCR (Abernathy, 

Lutz 1998). This statement is tested in this section in order to determine the relation between 

improvements in growth rate and FCR. The motivation behind this test is as follows. 

In the case studies and in the literature on aquaponics in South Africa (Konschel 2009), 

some individuals claim that they grow tilapia using chicken droppings to fertilize the water 

and stimulate algae growth, or aquatic plants such as duckweed, as feed for the fish. Using 

these feed sources as opposed to commercial pellet type feed would have an adverse effect 

on the FCR of the system. The feed source with a lower conversion rate is cheaper than the 

commercial feed, and this must also be taken into account. In order to accomplish this, the 

feed price per kilogram is used as the variable parameter. The feed price can be 

manipulated to take into account the decrease in FCR when using alternative feed sources. 

The adjusted feed price can be calculated as follows. 

                                                                            

                     

                    
..........................................(39) 

An analysis of the effect of placing these two parameters against each other would reveal 

the financial outcome of this test.  

The VBA program in the model calculates the value of the performance indicator (in this 

case the NPV) at each point in the array of parameters. Table 5 shows the output of the 

calculation.  
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Table 5 The NPV of farm 1 at an array of input parameters 

  

days taken to reach harvest size 
440 421 403 384 365 

fe
e

d
 p

ri
ce

 R 6 R 190 980 R 221 053 R 251 125 R 281 198 R 311 271 

R 7 R 161 742 R 189 862 R 217 982 R 246 102 R 274 222 

R 8 R 122 149 R 148 542 R 174 924 R 201 306 R 227 688 

R 9 R 103 115 R 128 208 R 153 283 R 178 358 R 203 433 

R 10 R 82 979 R 106 356 R 129 732 R 153 109 R 176 486 

 

The ranges for the two input parameters are as follows. The time taken to reach harvest size 

is set to 440 days at point 1, and decreases at equal intervals to 365 days at point 5 (figure 

49). The adjusted feed price is set to R10 at point A, and decreases at equal intervals to R6 

at point E (figure 49). 

The three-dimensional graph (figure 49) shows the plane which represents the NPV of the 

system over an array of varying parameters. 

 

 

Figure 49 Area displaying the net present value (NPV) of farm 1 over a range of different growth rates 
(points 1 to 5 represents growth rate varying between 440 and 365 days) and feed costs (R10 to R6 

between points A to E) 

 

In order to make use of the data in this result, the data is simplified so that it shows the 

information that is of interest to the study. Two of the corners of the plane represent the 

starting and ending points of the test, where the one variable is at its value which maximises 

the NPV, and the other is at its value where it minimises it. At the opposite end of the plane, 

the converse applies. Assuming the relation between the two parameters is linear, the line 

connecting the end-points can be plotted. At point 1, the feed price is set at R6, and time to 
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reach harvest size is set at 440 days. Point 5 shows the NPV when the feed price is 

increased to R10 and the days to reach harvest size is set at 365 days. Steps 2-4 show 

variations of these input parameters. Figure 50 shows the line representing this diagonal. 

Using this, the optimal parameters can be chosen. 

The relationship between varying both parameters by an equal amount respectively is shown 

(figure 50). The worst combination of parameters is observed when the growth rate and feed 

price are set at half way between the parameters‟ ranges (figure 50).  

 

 

 

 

 

 

 

 

The conclusion of this analysis is that it is more profitable to feed the fish a cheaper, 

substituted diet which decreases the growth rate. This conclusion contradicts the findings of 

(Abernathy, Lutz 1998); however, the reader should note that it is difficult to accurately 

estimate the input data without scientific results that state exactly what the FCR and feed 

cost is at the start and end points of the test range. Therefore, this figure may be slanted in 

the opposite direction if it were found that, for example, the cheaper feed decreases the 

growth rate to a larger extent than estimated in this test. This should be taken into account 

when considering the conclusion of this analysis. This topic by itself could be a prospect for 

future studies. 
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Figure 50 A line displaying the net present value (NPV) of farm 1 over a range of 
feed costs and growth rates (point 1: feed price R6, growth rate 440 days; point 

5: feed price R10, growth rate 365 days) 
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5.3.2.2 Sensitivity of NPV to growth rate vs. operating costs 

 

The purpose of this analysis is to determine the optimal parameters when weighing up 

growth rates and operating costs. The two parameters are related in a number of ways. A 

number of operating practices have an effect on the growth rate of the system. These 

operating practices affect the operating costs of the system. Some examples of operating 

practices that affect the operating costs as well as the growth rates are:  

 maintaining the system water temperature, which incorporates: 

o ensuring that the water is in the optimal temperature range; and 

o ensuring that the fluctuations in water temperature are not excessive. 

 feeding the fish at regular intervals; and 

 backwashing the filtration component at appropriate times. 

Determining the end values for these three-dimensional calculations can be challenging, as 

it is difficult to exactly estimate all the hypothetical scenarios that could play out. The end 

values of this particular example tests the days to reach harvest size at 300 days and daily 

cost at R120 on the one end (step 1), and increments through to the other end point where 

the input values are 440 day to harvest and R0 additional operating cost (step 5).  

The cost of R120 at step 1 could be incurred in a number of ways. An example would be 

heating the water entering into the aquaculture component at a certain flow rate of litres per 

minute by a certain number of °C. The electrical heating cost can be calculated using these 

values. 

                                         
 

     
  

 

       
 
     

      
       

      

     
  

                                              ...........................(40) 

The plane of the NPV under varying growth rates vs. operating costs is shown (figure 52). 
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Figure 51 A plane representing the net present value (NPV) of farm 1 over a range of different growth 
rates and operating costs (points 1 to 5 represent the additional operating cost from R120 to R0; points A 

to E represent growth rate from 300 to 440 days) 

 

From results, the straight line between the end points of the parameters‟ ranges is plotted 

(figure 52). 

 

 

Figure 52 A line displaying the net present value (NPV) of farm 1 over a range of growth rates and 
operating costs (point 1: additional operating costs R120, growth rate 300 days; point 5: additional 

operating costs R0, growth rate 440 days) 
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The test confirms that step 5 is the most profitable scenario. This implies that the operating 

cost of the system should be minimised, at the expense of the growth rate. Again, changing 

the input parameters could result in a different conclusion from this test. For example, if 

there were a method where the growth rate could be increased without increasing the 

operating expenses as much, this scenario might be favourable.  

 

5.3.2.3 Sensitivity of NPV to capex vs. growth rate 

 

Another test that can be performed using this functionality is analysing the effect of 

simultaneously varying the capital cost, as well as the growth rate in the model, and 

analysing the effect of these parameters on the NPV (figure 53). The motivation for this test 

is as follows. In the same way that the growth rate can be affected by operating costs, it can 

also be affected by the capital expenditure. Hypothetically, purchasing more effective 

filtration equipment, automation equipment, or a solar heating apparatus would have a 

positive impact on the growth rate, but it would also increase the capital costs. 

 

 

Figure 53 A plane representing the net present value (NPV) over a range of growth rates and capital costs 
(points 1 to 5 represent the capital cost from R 90 000 to R 130 000; points A to E represent growth rate 

from 300 to 440 days) 
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The line taken from the one corner of the plane to the opposite side (as in 5.3.2.1 and 

5.3.2.2) is calculated (figure 54).  

 

 

Figure 54 A line representing the net present value (NPV) over a range of growth rates and capital costs 
costs (point 1: capital cost R 90 000, growth rate 440 days; point 5: capital costs R 130 000, growth rate 

300 days) 

 

 

Once again the result of this test would be different if other input parameters were used. It is 

difficult to estimate the effect of purchasing more expensive equipment on the growth rate; 

an in-depth investigation would establish more accurate input parameters for this test. 

 

5.3.3 Effect of capital cost on profitability 

 

The proportion of the capital cost to total costs for each of the case study systems is 

calculated. The sections of the chart show the proportions of the various elements that 

comprise the sales income of a system (figure 55). 
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Figure 55 A breakdown of the sales generated when operating an aquaponics farm 

 

It was noted that the farms that spend a high proportion of their costs on capital purchases 

and interest on debt are also the farms that perform poorly in terms of the NPV indicator. It is 

possible that the high proportion of these costs is responsible for the poor performance.  A 

test that would help confirm the suspicion that the high capital costs are responsible for the 

poor performance of the other systems is a correlation test between the two. 

The following investigation tests the correlation between the proportion of capital cost of the 

system relative to total cost, and the average NPV for the 10 year study period. The decision 

to use the average NPV is made because it gives an indication of the farms‟ performance 

over the entire study period. The values for the farms are shown in table 6 below. 

Table 6 Calculations to determine the correlation between the net present value (NPV) of various farms 

   

cost of sales
48%

other 
overheads

19%

capital cost
1%

interest
5%

tax
2%

retained 
earnings

25%

cost of sales

other overheads

capital cost

interest

tax

retained earnings

 Average of NPV over 10 years % of Capital Cost to Total Costs 

Farm 
1 

R 18 749.25 12.13% 

Farm 
2 

R -137 490.74 21.17% 

Farm 
3 

R -338 225.13 29.50% 

Farm 
4 

R -224 642.76 41.54% 

  Correlation between the data 
arrays 

  -0.745767124 
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As shown in the table, the correlation between the proportion of capital cost to total cost and 

the average NPV over 10 years is approximately -0.75. This substantiates the fact that in 

order to design a system that will perform better, the ratio of capital costs to total costs 

should be minimised. The correlation of -0.75 signifies that there is reasonable inverse 

relation between the two parameters, but it also suggests that there are other factors that 

could contribute to the poor performance of the farms. This warrants a further investigation 

into the poor performance of these farms. 

Therefore, the first step in designing a potentially successful aquaponics system is to 

determine an appropriate proportion of the cost of capital to total cost of sales. This can be 

done by either increasing the production of the system, decreasing the capital cost, or both. 

 

5.3.4 Comparison between the results of the case studies and the literature 

 

According to research (Rakocy, Masser & Losordo 2006), the economic potential of 

aquaponic systems looks promising based on the studies at their system in the UVI. They 

warn, however, that it would be inaccurate to make sweeping statements about the 

economic potential because many aspects of an aquaponics system vary by location. An 

outdoor system such as the one at the UVI requires a lower capital cost to construct; this 

affects the economic feasibility of the operation. This corresponds with the result found in 

section 5.3.1.2., where farms 2, 3 and 4 performed considerably better when capital costs 

were reduced.  

Selling prices for fresh fish and vegetables at the UVI are relatively high. This is because of 

the cost associated with transporting fresh produce to the island. The UVI capitalises on the 

high prices caused by transport and importing costs. The success of the UVI system 

corresponds to the analysis in 5.3.1.4., where it is found that the performance of the system 

is sensitive to the selling price of the fish. The research at the UVI indicates that aquaponics 

systems can be profitable in certain niche markets.  

A feasibility study on operating an aquaponics system in conjunction with an ethanol plant 

was conducted in the USA (Hansen, Hardy 2008).  The waste heat energy is used to heat 

the water in the aquaponics system. The study found that the system is economically viable, 

and theoretically produces a 19.06 % return on investment. However, this system farms with 

a genetically superior species of tilapia, in a country where there is an established market, 
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and the system receives free heat energy. Therefore, comparisons between this case and 

the case studies are not applicable.  

Two South African authors have also commented on the feasibility of aquaponics in South 

Africa. They claim that the systems described in their manuals are economically feasible, 

granted that the correct management practises are maintained (Konschel 2009, Cuthbert 

2007). These statements do not correspond with the research done in this thesis. Rather, 

the income figures they quote are overly optimistic, and various costs are overlooked.  

  

5.4 Recommendations for the case studies 

 

The stocking densities, pond sizes, and area of hydroponic growth should be calculated 

scientifically, so that the space and resources are used efficiently. This is not always the 

case and some of farmers have received information from sources that do not use well-

established or scientific information in order to base their recommendations upon.  

The following section lists some recommendations to the farmers operating the case study 

farms. These recommendations are based on the study of aquaculture and aquaponics in 

the literature study, as well as the results of the feasibility study and sensitivity analyses on 

the case study farms. 

 

5.4.1 Fish stock 

 

The farmers should change from growing out mixed-gender tilapia to all-male stock. Mixed-

sex tilapia reach sexual maturity when they are between 9 and 15cm total length, at which 

stage they are between the ages of 5 and 10 months (Duponchelle, Panfili 1998, Konschel 

2009). At this stage, they have not yet reached market size and weight. Once sexual 

maturity is reached, growth is severely stunted amongst the female tilapia. Both genders 

expend energy on reproduction instead of growth in biomass. Male tilapia are said to grow at 

approximately twice as fast as females (Popma, Masser 1999).  

The sensitivity analysis performed in section 4.3.1.5 shows that growth rate is a factor that 

influences the NPV to a large extent. Unless reproduction is controlled, more than 75 % of 

the fish biomass may be too small for public acceptance (Phelps, Popma 2000). 
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Furthermore, the offspring produced by the reproduction will compete for food, space and 

resources, subsequently decreasing the productivity of the operation. 

Buying or producing an all-male fish stock is a relatively simple process, and the effect 

thereof on the profitability of the operation is substantial. Further reading on the methods of 

acquiring an all-male fish stock and the sex-reversal process are described by (Phelps, 

Popma 2000). 

 

5.4.1.1 Growth of fish relative to temperature 

 

This section shows the importance of maintaining the temperature within a suitable range on 

the growth rate of the fish. 

 

According to research (Timmons, Ebeling 2007), a way to define fish growth is based upon a 

temperature unit approach. The following formula is used to calculate the growth rate of a 

fish species. 

       
  

     
  

       

      
......................................................(41) 

The symbol T in the equation is the temperature that the fish are grown at. Tbase and TUbase 

are constants that are supplied by (Timmons, Ebeling 2007). Using equation 41, a graph can 

be draw representing the number of months that it would take for a tilapia to reach market 

size at varying temperatures (figure 56).  
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Figure 56 Months taken to reach harvest size at varying temperatures (Timmons, Ebeling 2007) 

 

Figure 57 shows the time taken to reach harvest size for a smaller range of temperature to 

get a better idea of the time taken under a likely range of temperature. 

 

 

Figure 57 Months taken to reach harvest size at varying temperatures (for smaller range of temperatures) 
(Timmons, Ebeling 2007) 

 

This formula is an approximate calculation and the actual growth rate is dependent on other 

aspects such as water and feed quality, stocking density and the species of tilapia farmed. 
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The growth rates calculated by this approximated formula are higher than those observed in 

the case studies. 

However, the figures demonstrate the importance of maintaining the water temperature 

within a suitable range. The current farmers must ensure that they maintain their water 

temperatures using the heating devices at their disposal. From the study it was determined 

that the farmers would only need to heat their water for a number of months in the year. 

Other measures that can be taken are to insulate the fish tanks and greenhouse to minimise 

the loss of heat. 

 

5.4.1.2 Production staging 

 

Using a staggered production system such that the crops and fish are harvested at regular 

intervals (as opposed to harvesting the entire system at the same time), is recommended 

(Rakocy et al. 2003). This eliminates the problem of experiencing nutrient deficiencies in the 

system towards the end of the plants‟ life cycles. More information on this topic is available 

from (Rakocy et al. 2003). Staggering production also provides the farmer with produce at 

regular intervals. This makes the harvesting process more manageable and cost-efficient. It 

is also preferable to have a regular produce for marketing and sales purposes as the 

products are perishable and markets prefer a regular supply of goods (Rakocy, Masser & 

Losordo 2006).  

In a well-designed system, both the aquaculture and hydroponic components of the system 

operate at near-maximum efficiency (Rakocy, Masser & Losordo 2006). Operating a system 

with fish stocking densities near the maximum stocking density is advantageous because it 

uses space efficiently which maximises production, and reduces the variation in the daily 

feed input in the system. The latter advantage is an important factor for the hydroponic 

component (Rakocy, Masser & Losordo 2006). The system‟s production staging should be 

designed in such a way that the nutrient production by the fish and nutrient uptake by the 

plants are matched. 
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5.4.2 System design 

5.4.2.1 Filtration 

 

The filtration used in some of the farms needs to be improved in order to improve water 

quality. If the farm operators intend on stocking the ponds at stocking densities that are in 

line with other operations overseas (Rakocy, Masser & Losordo 2006), the filtration systems 

must be improved. A solids capture device is needed in some of the systems, as this is a 

vital component of RAS (Timmons, Ebeling 2007). Some technically feasible aquaponics 

designs operate without solids capture devices, but this in often to the detriment of the 

aquaculture component of the system. These systems have a high ratio of hydroponics 

component relative to aquaculture component. Further reading on these systems is available 

from (Rakocy, Masser & Losordo 2006, Diver, Rinehart 2006). However, solids capture 

devices can be relatively expensive, so this factor needs to be taken into account. A study 

determine to what extent the farmers need to improve their filtration would reveal more 

information.  

 

5.4.2.2 Grading 

 

A practice that can help to increase the productivity of the systems is grading the fish at 

certain stages. Grading is a process where the fish are sorted according to size, and the 

smaller fish are removed. These fish are removed because they are not converting feed into 

biomass efficiently (Timmons, Ebeling 2007). Fish that grow slower than the ideal growth 

rate are known as genetic runts. These fish do not have the potential to grow at an efficient 

rate, and should be identified and removed from the system as early in the production cycle 

as possible (Timmons, Clark 2009). Grading can be performed by drawing a mesh grid with 

holes of a specific size though the water body. At the stage when grading is performed, the 

majority of the fish should be of such a size that they cannot fit though the mesh screen. The 

genetic runts are smaller and fit though the screen, after which they should be removed from 

the system and culled and discarded of humanely. The case study farms do not grade their 

fish. This decreases productivity and increases the number of smaller, un-marketable fish 

harvested.  
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5.4.2.3 Construction 

 

The current farmers have evidently already constructed their farms, so little can be done in 

the way of improving this aspect. However, at a later stage when the assets must be 

replaced as a result of wear and tear, or if the farmer decides to expand on the system, the 

farmers could construct the components in a slightly differently. For example, larger growout 

tanks or cheaper growbeds could be installed. 

An example of how the farmers could improve the financial performance of the farms by 

altering the construction is demonstrated below. The construction of the growbeds could be 

done in a more cost-effective manner. Figure 58 and 59 shows the growbeds of farms 2 and 

4 respectively. Note the costly materials used for the support of the growbeds, as well as the 

inefficient usage of space. 

 

 

Figure 58 Farm 2 growbeds 
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Figure 59 Farm 4 growbeds 

 

An alternative construction method is shown (figure 60 and 61); this technique of growbed 

construction is cheaper and can be designed such that it is more efficient in terms of space 

utilization. The growbed is constructed by digging and levelling a hole in the shape of the 

desired growbed. The plumbing is then installed, and the formation is lined with a tough 

plastic material. In the case below, the growbed is used for raft hydroponics, but medium 

hydroponics could also be practised in this manner. 

 

 

Figure 60 Construction of an alternative growbed 
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Figure 61 Alternative growbed in operation 

 

Decreasing the cost of constructing the assets will increase the financial performance of the 

farm (section 5.3.3). 

 

5.4.3 Other recommendations 

 

These recommendations have been uncovered during the course of the study. The author 

acknowledges that these recommendations could cause the aquaponics system to move 

away from its core objective, which is to produce and sell products (i.e. fish and plants), but 

the recommendations should be mentioned nonetheless. 

 

5.4.3.1 Value-adding 

 

The farmer could add value to the produce of the system by processing the products. Ways 

in which to do this include: 

 packaging the produce into marketable size packages; 

 filleting, smoking or breading the fish; and 

 processing the vegetables or herbs into chutney, salsa, pesto or jam. 
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Value-adding can increase the value and shelf-life of the produce considerably, but often the 

costs involved in value-adding are neglected. The labour and facility requirements of 

performing such tasks can be considerable. 

 

5.4.3.2 Agritourism 

 

Agritourism is often practised in conjunction with aquaponics. It appears that the concept of 

aquaponics is intriguing to many people. The farm operator can give a group of tourists a 

guided tour of the facility and explain how the aquaponics farm operates. Some aquaponics 

farmers also offer courses on aquaponics. These activities can generate some extra income 

for the operation. A factor that needs to be taken into account when allowing large numbers 

of visitors into an aquaponics facility is that of bio-security. The visitors could cause a 

disease to be introduced into the system, which could cause a number of problems. The 

time taken to give the tourists the tour should also be taken into account. The author 

concedes that this aspect is off course from the actual study, but numerous cases of these 

activities taking place are observed; for this reason, the prospect of these activities is stated. 

  

5.4.3.3 Niche marketing 

 

This aspect could improve the profitability of the aquaponics system to a large extent. The 

profitability of the systems is highly sensitive to the selling price of the produce.  

 

5.4.3.4 Diversification 

 

A noteworthy recommendation that makes financial sense is that of diversification of the 

income streams. Strictly, diversification refers to a strategy that reduces the exposure to 

risks by combining a variety of investments that are unlikely to all move in the same direction 

(Firer et al. 2008). These strategies can help prevent unfavourable situations from occurring. 

For example, if a component of the system is not producing the expected income, the other 

products can mitigate the loss incurred to the system. A situation like this can occur for a 

number of reasons, such as the market price for a certain product unexpectedly dropping to 
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below the cost of production, or a disease wiping out a whole crop or species of plant or 

animal. 

Suggestions for diversification are listed below: 

 the farm operator could incorporate chickens into the system as in the operations on 

farm 4; 

 a number of different vegetables or herbs could be planted so that if one vegetable 

type performs badly, the income from the other vegetables can mitigate the loss.; 

 algae can be grown in order to feed chickens or fish or harvest spirulina; and 

 the batches of fish could be isolated to as to prevent the spread of disease from one 

batch to the next. 

 

5.4.3.5 Conclusion on other recommendations 

 

The recommendations in section 5.4.3 have been found to increase the revenue of 

aquaponics operations. These recommendations have been made by (Konschel 2009, 

Cuthbert 2007). The author is however suspicious that these activities are suggested to 

make an aquaponics venture seem more profitable than it is. The author found no evidence 

of an economically viable aquaponics system in operation in South Africa. Therefore, care 

should be taken not to overestimate the increased revenue received from these 

recommendations.  
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6 Near-ideal system  

 

The following section investigates the possibility of designing and specifying a system that is 

theoretically better than the current farms in South Africa. The logic behind this investigation 

is that using the information gathered from the literature study, case studies, feasibility 

studies, sensitivity analyses and recommendations to the farmers, a system could be 

designed or specified that is more profitable than the current farmers‟. Favourable 

characteristics of aquaponics systems that would cause them to be more profitable can be 

indentified and incorporated into the so-called “near-ideal” system. 

 

6.1.1 Methods for designing near-ideal system 

 

The feasibility model is used to calculate the performance of the near-ideal system. The 

process of designing or specifying a near-ideal aquaponics system investigates whether a 

favourable arrangement of model input parameters could improve the chances of success 

for a system of this sort. The input parameters are subject to a number of constraints, which 

need to be taken into consideration. 

In the same way that the operating objective for financial management is to maximise the net 

present worth of a venture or share (Firer et al. 2008), the purpose of this section is to 

maximise the expected NPV of a potential aquaponics venture.  

An objective function can be formulated that achieves this aim. This function is shown below. 

The components that make up the objective function are individually broken down until each 

component is directly constrained by an external factor. These constrained entities are typed 

in bold. 
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                                                                   .....(53) 

                                                          ........(54) 

 

Figure 62 shows the formulas in a break-down arrangement. 

Maximise NPV= fn(Cash Flows)

 

Cash Flows = 

fn(sales, cash) 

 

Sales = fn(production rate (aqu), 

production rate (hydro), 

sales prices) 

Costs = fn(capex, opex)  

 

Production rate (aqu) = 

fn(biological growth, 

system design) 

 

Capex = fn(system design) 

 

Opex = fn(cost of sales, 

overheads) 

 

Cost of sales = fn(feed price, 

FCR, additives, hydroponic 

component costs) 

 

Overheads = fn(electricity 

costs, insurance, labour, 

interest on debt, capital 

purchases) 

 

Electricity costs = fn(electricity 

price, inflation on electricity, 

power consumption)

 

Production rate (hydro) 

= fn(system design, 

temperature, water 

quality)

 

Biological growth = 

fn(species, feed quality, 

water quality, 

temperature)  

 

 

 

 

The group of formulas above show the relation between the objective (to maximise the NPV 

over the 10-year scope), and the constrained parameters which can be optimised in favour 

of the goal. 

There are a number of constraints which cannot realistically be changed. These include the 

electricity price, species, insurance rate and inflation. The other parameters can be changed, 

but a change in one parameter will likely affect a number of the other parameters. For this 

reason, it is not possible to use a software package to determine an ideal set of input 

Figure 62 Chart of the entities and parameters that affect the objective function of the near-ideal system 
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parameters. The objective function, however, shows which entities should be maximised, 

and which should be minimised. The sales element of the function should be maximised, 

and the costs element minimised.  

 

The following recommendations can help to accomplish this. 

 Capital cost should be minimised such that it comprises a smaller percentage of the 

cost of sales of the system. 

 The system should make maximum use of cheap or available energy such as solar 

or wood-burning to replace electricity. 

 The system should be designed such that it is less sensitive to an increase in daily 

operating costs, to accommodate for unforeseen costs. 

 Throughout the entire function, the risk factor should be minimised. This should be 

done to minimise the likelihood of an unfavourable situation taking place that 

adversely affects the objective function, and also to reduce the cost of capital. 

 The effect of economies of scale should be taken into account. 

 

6.2 Designing of the near-ideal system 

 

6.2.1 Capital cost 

  

Capital cost is an important consideration in the design of a near-ideal system. Before 

designing a near-ideal system, the author must decide upon a suitable amount for the capital 

cost. If no constraints are set out, the economies of scale would dictate that the larger the 

system is, the better it would perform. It was therefore decided to limit the capital cost to 

within the range of those of the case study farms i.e. between R100 000 and R 250 000.  

The near-ideal system should maximise the productivity of the system using this capital cost. 

This can be achieved by: 

 using low-cost materials with acceptable wear and tear rates; and 

 personally overseeing the construction of the system instead of outsourcing it. 

Also important when constructing the system is the following factors: 
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 maximising the utilization of the greenhouse space; and 

 designing the system such that it makes efficient use of energy. 

 

6.2.2 System design 

 

Using the appropriate ratio between the aquaculture component and hydroponic component 

is a key aspect of the system design. This ratio is described in terms of water volume or 

surface area of the components, and depends on the stocking densities of the aquaculture 

component, and the method of hydroponics used. 

The method of hydroponics most commonly used in systems that strive to be commercially 

viable is the raft hydroponics technique. For that reason, this method is chosen for the near-

ideal system.  

For raft hydroponics, the recommended ratio of surface area of the hydroponic component 

relative to the aquaculture component is 7.3:1 (Rakocy, Masser & Losordo 2006). This ratio 

will be used for the near-ideal system. Using this recommended ratio will result in a large 

majority of the system‟s water being in the hydroponic component.  

As a result of the recommendation to diversify the system‟s income streams, the near-ideal 

system could have a variation of different hydroponic growbeds. An NFT or gravel 

component could be constructed and integrated into the system at relatively low cost.  

 

6.2.3 Summary of near-ideal system characteristics 

 

A near-ideal system would have the following characteristics: 

 correct component ratio; 

 low-cost construction; 

 maximised space utilization i.e. maximised productivity of the system; 

 optimal water temperatures using solar and fire-powered water heating if possible; 

 sufficient flow rates and aeration for solids removal, DO levels, and TAN removal; 

 sufficient surface area for bacteria to biologically filter the compounds; 

 diverse income streams (separate fish stocks, various vegetables, various 

hydroponic techniques, possible incorporation of chickens); 
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 consider substituting pelleted feed with duckweed and chicken droppings; 

 minimised system risk (sensitivity to daily operating costs, bio-security, power failure, 

monitoring equipment); 

 tilapia O. mossambicus with strong genetics farmed ; 

 efficient electrical usage; 

 guaranteed market for goods, with potential price premium; and 

 correct management practices. 

Using similar construction methods as those in farm 1 could allow the capital costs to be 

relatively low. A realistic amount for the capital costs is estimated at R180 000. Using this 

budget, the volume of water in the growout tanks should be maximised. The surface area of 

the hydroponic growbeds should also be maximised. As in farm 1, the fingerlings should be 

bred in-house as this is theoretically more cost-effective. Figure 64 shows the breeding tanks 

specified for this process.  

The near-ideal system has a separate solids capture component as this aspect is 

emphasised in RAS (Timmons, Ebeling 2007.  

A number of the input parameters remain the same as with the case studies as they are 

constrained by external factors.  
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6.2.4 A potential layout for a near-ideal system 

 

Figure 63 shows a potential layout for the near-ideal system. The figure is simply to illustrate 

that a near-ideal system should use the greenhouse space efficiently, and that the 

component ratios should be designed appropriately. 

 

 

 

 

 

 

 

Figure 63 A potential layout for a near-ideal aquaponics system 
(approximately drawn to scale) 
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6.2.5 Near-ideal system performance according to feasibility model 

 

The parameters are entered into the model. A larger daily operating cost value has been 

used to account for labour charges and unexpected costs. Figure 64 shows the projected 

NPV for the near-ideal system. 

 

 

Figure 64 Net present value (NPV) for 10 years of a near-ideal system 

 

The performance of the near-ideal system draws a slight resemblance to that of farm 1 when 

comparing the NPVs. The difference between the two is that the near-ideal system incurs a 

cost for labour. The breakeven additional operating cost for farm 1 is R65.  

If a species such as O. Niloticus were hypothetically allowed to be farmed with, and the time 

taken to reach harvest size is decreased from 365 days for O. Mossambicus (Cuthbert 2007, 

L De Wet 2010, pers. comm., 27 Jan) to 280 days (Chapman 2000), the system‟s 

performance would improve considerably. Figure 65 shows the NPV of the near-ideal 

system when farming with a superior tilapia species. The performance of the system differs 

as a result of the higher growth rate of the O. Niloticus, which increases the productivity of 

the system. 
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Figure 65 Net present value (NPV) of near-ideal system farming a superior tilapia species 

 

The figure shows that the discounted payback period for the system is approximately in the 

fourth quarter of the second year. This represents a much more favourable investment. A 

way to quantify the improvement between farming O. mossambicus compared to genetically 

superior species could be to look at the difference in return on investment. Farming O. 

mossambicus provides a 7 % annual return on investment over 10 years. The genetically 

superior species would provide an 18.07 % annual return on investment over 10 years. 

Hypothetically, farming with a superior tilapia species would not increase the risk of the 

operation; however, stringent safety precautions would have to be put in place to prevent the 

fish from escaping into the wild. Additional research into this subject would establish the 

practical implications of farming with an alien species. 
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7 Conclusion  

 

After studying the state of the aquaculture industry, tilapia farming, the constraints limiting 

the development of aquaculture and the aquaponics “industry”, the information needed to 

build a techno-economic model for the case studies in South Africa was gathered. The case 

studies were then documented, and the data was used to populate the techno-economic 

model and determine the feasibility of the case studies. The sensitivity analysis uncovered 

some facts about the systems‟ dependence on and interrelationships between a number of 

constraints. Recommendations for the current farms were then made based on the 

conclusions from the techno-economic model and other information gathered. The study 

then examined whether a near-ideal system could be designed such that it performs better 

financially compared to the current systems. This virtual system combined all known best 

practices and values; this hypothetical system was entered into the techno-economic model 

and showed that it was borderline viable. 

The study concludes that the aquaculture industry is a very difficult one to successfully enter 

into. This statement was reaffirmed when one of the case study farms closed down half way 

through the study, citing the lack of financial viability as the reason for terminating 

operations. 

The feasibility study of the case studies concluded that the majority of the farms would make 

particularly unfavourable investments under the current circumstances. One farm did 

perform reasonably well, but a number of assumptions were made which positively 

influenced the outcome of the system‟s performance. These assumptions do not reflect the 

reality of an aquaponics system in South Africa; they merely reflect the best-case actual 

operations at the farm.  

The case studies could not be used to completely verify the model as they are not nearly as 

productive as the model predicts; yet, the model still predicts that most of the case studies 

would not be financially viable. 

The recommendations given for the case study farms would help the farmers to improve the 

profitability of the farms, but not necessarily to such an extent that they result in the farms 

becoming financially viable.  

The section studying the prospect of designing a near-ideal system based on the information 

gathered during the rest of the study did not bring forward any astonishing results. The 

constraints that the small-scale aquaponics industry is placed under restrict the operations to 
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such an extent that only marginal improvements could be made in a few aspects. The near-

ideal system benefits from improvements made with respect to the productivity, risk 

reduction and efficiency of the operations.  

There are a number of factors that could transform aquaponics from a risky venture with low 

returns to an economically feasible venture. Increasing the scale of the operation may 

decrease the proportional cost of capital and operation, thereby making it more profitable. 

The species constraint could also play a significant role in the viability of the operations. If 

the superior, faster-growing species of tilapia were permitted to be farmed in South Africa, 

the operations would benefit significantly from this, as shown in section 6. Niche marketing 

could also be instrumental to the success of aquaponics. If the farmers could fetch higher 

prices for their produce, this would have a substantial effect on the feasibility. 

Aquaponics is a viable concept when viewed from a technical perspective. The symbiotic 

relationship between the plants and fish makes it a sustainable food production method. 

However, from an economic perspective, the odds are stacked against it in the form of high 

capital and operating costs, high risk, and low profit margins. Extreme caution should be 

practised when considering an aquaponics venture and, as stated by (Timmons, Clark 

2009), “Only invest what you can afford to lose”. 
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Appendix A – Trend of tilapia in the U.S.A.  

 

Table 7 The growing trend in tilapia consumption in the US 

  2007 1995 1990 

species rank 
kg / 

capita 
kg / 

capita 
rank 

kg / 
capita 

shrimp 1 1.86 1.13 2 0 

canned 
tuna 

2 1.22 1.54 1 0.68 

salmon 3 1.07 0.54 5 0.33 

pollock 4 0.78 0.69 4 0.58 

tilapia 5 0.52 0 
not 

ranked 
0 

catfish 6 0.40 0.39 6 0.32 

crab 7 0.31 0.15 10 0.13 

cod 8 0.21 0.44 3 0.63 

clams 9 0.20 0.26 7 0.28 
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Appendix B - Old feasibility model outline 
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Figure 66 Outline of the old feasibility model that predominantly uses VBA programming 
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Appendix C - Description of financial indicators 

 

Net present value 

 

An investment is seen as being worth undertaking if it creates value for its owners. In a 

general sense, this is defined as an operation that creates value and is therefore worth more 

in the marketplace than it costs to acquire. The net present value (NPV) is defined as the 

difference between an investment‟s market value and its cost (Firer et al. 2008). The rule for 

NPVs is that an investment should be accepted if the NPV is positive, and rejected if the 

NPV is negative.  

The NPV is calculated by discounting all of the cash flows of an investment (including the 

investment cost) to the present time, using a discount rate. The calculation of the NPV is a 

relatively simple one, but task of determining the appropriate discount rate, as well as 

predicting the future cash flows, is much more challenging (Firer et al. 2008). The formula for 

the NPV is as follows. 

     
             

                  
 
   ................................................(55) 

 

Payback rule 

 

The Payback rule is defined as the amount of time taken for an investment to generate an 

accumulated cash flow that equals the initial capital cost. The rule used with this financial 

indicator is that an investment should be accepted if it has a payback period that is less than 

a pre-determined number of years. 

The payback period is one of the simpler and more widely understood ideas when it comes 

to measuring the performance of an investment, yet it has a number of pitfalls. The method 

does not take into account the time value of money, as well as risk. The method also ignores 

any cash flows that take place after the cut-off period (i.e. the predetermined number of 

years as above). Perhaps the biggest problem with this method is that it is difficult to decide 

on the right cut-off period. There is no economic rationale behind looking at the cut-off period 

in the first place, which often results in the analyst choosing a cut-off period arbitrarily.  
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In the case studies, the payback period may be misleading as a result of the second 

disadvantage mentioned above. The farmers incur large sums of capital costs at various 

stages in the projects‟ life cycles. Changing the timing of these capital costs would alter the 

result of the payback period, but it may not necessarily mean that the investment is more 

favourable in the long term. 

 

Discounted payback rule 

 

This variation of the payback rule takes into account the time value of money, and is 

therefore a better indication of whether an investment is attractive. 

The discounted payback rule is a compromise between two other financial indicators, 

namely the regular payback rule, and the NPV indicator. It incorporates elements of both, 

which causes it to lack the simplicity of the former, and the conceptual rigour of the latter. 

However, it is still a better indicator than the regular payback rule, as it recognises that the 

investment money could have been used elsewhere, thereby earning a return on it.  

 

Average accounting return 

 

The average accounting return is calculated by taking the average net profit after tax and 

dividing it by the average book value of the investment. This indicator has a relatively high 

level of use in South Africa (Firer et al. 2008), and is therefore discussed in order to point out 

its strengths and weakness as a decision-making rule. The formula for calculating average 

accounting return is as follows. 

                          
                            

                  
           

This indicator is easy to calculate, as the necessary information is usually available. 

However, the rule has a number of weaknesses. It is not a true rate of return in any 

meaningful economic sense, as it is the ratio of two accounting numbers. As in the payback 

rule, the average accounting return relies on an arbitrary cut-off rate to decide the 

investment‟s fate.  
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Internal rate of return 

 

The internal rate of return (IRR) is defined as the discount rate that makes the NPV of the 

investment zero. In investments with multiple cash flows (which is the case in the 

investments considered in this thesis), the IRR cannot be solved for algebraically, and must 

be solved using trial and error.  

   
             

                  

 

   

                                   

 

The rule for making decisions using the IRR indictor is to accept an investment if the IRR 

exceeds the required return.  

A problem with the IRR rule as a decision-making tool is that, when determining the IRR of 

an investment that produces multiple, irregular cash flows, an event may occur where there 

are multiple rates of return.  

Another problem that arises with the IRR rule occurs when a comparison between two 

investments that are mutually exclusive (implying that taking the one investment prevents 

the taking of the other) is made. The IRR rule can sometimes return misleading results, 

causing an investment to be chosen over another that has a higher NPV. Therefore, when 

considering mutually exclusive investments, the IRR rule should not be used. 

Owing to its close relation to NPV, and the ease with which the indicator can be understood 

and communicated, the IRR rule is very popular in practice. 

 

Profitability index 

 

Also called the benefit/cost ratio, this ratio is determined by dividing the present value (PV) 

of the future cash flows by the investment cost. It is closely related to the NPV, and generally 

leads to the same decisions being made. 
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 Appendix D - People interviewed for the thesis 

 

Kevin Cuthbert 

Kevin is an aquaculture consultant in the Garden Route area. Contact was made with Kevin 

in the early stages of the literature study. Kevin provided many valuable contacts to 

aquaponics farmers. He also made available a handbook on aquaponics which he wrote 

himself, which provides a good background on the design, construction methods and 

operating practices of some of the farms operating in South Africa. 

Tanner Georgiou 

Tanner is an aquaculture specialist and has worked on many fish farms during his career. 

He provided a selling price for tilapia that is realistic as he signed a contract with a fishery to 

sell tilapia in South Africa.  

Ken Konschel 

Ken is an aquaponics expert from the KZN region, and has been working in the aquaponics 

industry for many years. He has also written a handbook on aquaponics in South Africa, 

which provides a lot of information on the topic as gained through Ken‟s person experience.  

He received an award for innovative work from the International Institute of Inventors in 

2003.  

Dr. Charles Johnson 

Dr. Johnson is an aquaponics specialist from the U.S.A., and the interview with him brought 

forward some interesting details. He is of the opinion that small-scale aquaponics can be 

successful and helped with some conceptual aspects of the thesis. 

Gareth Lawrence 

Gareth is an aquaculture professional and specialises in making business plans and 

feasibility studies for aquaculture ventures. He assisted by outlining the methods to perform 

the feasibility study, as well as providing information on some intricacies of how to model an 

aquaculture venture. He also helped in verifying that the model is in fact working correctly. 
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Lourens de Wet 

 Lourens is an aquaculture specialist from the University of Stellenbosch. He helped by 

outlining the factors that constrain the culture of tilapia culture in South Africa, and providing 

a realistic outlook on the project. 

Leslie Ter Morshuizen 

Leslie is an aquaculture specialist, and helped to provide contact with people involved in 

aquaponics in South Africa. He provided some insight into the selling of tilapia in South 

Africa.  
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Appendix E – Financial indicators of the case study farms 

 

The tables below show the financial indicators for the case study farms under the conditions 

as described in section 5.1.1. The average accounting return (AAR) and internal rate of 

return (IRR) performance indicators cannot be used in these cases as they do not supply 

valuable information. The AAR requires a book value for the system, and this value is 

difficult to calculate correctly as a result of depreciation. The irregular cash flows received by 

the system cause the IRR to give misleading results as there are a number of discount rates 

where the NPV is zero. Therefore, only the NPAT, net cash flow, NPV, profitability index and 

payback periods are given below. The payback period column shows the years in which the 

system has paid back its capital cost. The table shows each year subsequent to the year 

that the system has accumulated more profit than its capital cost as it is possible that the 

systems produce negative earnings during a year and no longer satisfy the payback test. 

 

Farm 1 Financial Indicators 

 

Table 8 Financial Indicators of Farm 1 

 
NPAT 

net cash 
flow NPV 

profitability 
index 

regular 
payback 
period 

disc. 
payback 
period 

Year 0 
 

-R 100 000 -R 100 000 
   

Year 1 -R 28 172 -R 15 005 -R 113 641 -13.64 % 
  

Year 2 R 29 508 R 43 596 -R 77 611 22.39 % 
  

Year 3 R 38 747 R 53 864 -R 37 142 62.86 % 
  Year 4 R 16 644 R 32 776 -R 14 756 85.24 % Year 4 

 Year 5 -R 3 370 R 13 892 -R 6 130 93.87 % Year 5 
 Year 6 R 46 324 R 64 794 R 30 445 130.44 % Year 6 Year 6 

Year 7 R 64 473 R 84 292 R 73 700 173.70 % Year 7 Year 7 

Year 8 R 68 087 R 89 238 R 115 330 215.33 % Year 8 Year 8 

Year 9 R 35 080 R 57 711 R 139 805 239.81 % Year 9 Year 9 

Year 10 R 28 652 R 52 730 R 160 135 260.13 % Year 10 Year 10 
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Farm 2 Financial Indicators 

 

Table 9 Financial Indicators of Farm 2 

  NPAT 
net cash 
flow NPV 

profitability 
index 

regular 
payback 
period 

discounted 
payback 
period 

Year 0   -R 250 000 -R 250 000       

Year 1 -R 65 964 -R 33 048 -R 282 567 -13.03 %     

Year 2 R 16 049 R 51 270 -R 238 222 4.71 %     

Year 3 R 47 695 R 85 488 -R 171 236 31.51 %     

Year 4 R 9 281 R 49 613 -R 136 447 45.42 %     

Year 5 -R 44 903 -R 1 749 -R 138 734 44.51 %     

Year 6 R 11 303 R 57 478 -R 105 396 57.84 %     

Year 7 -R 12 136 R 37 412 -R 85 630 65.75 %     

Year 8 -R 46 654 R 6 222 -R 82 907 66.84 %     

Year 9 R 2 160 R 58 737 -R 56 873 77.25 %     

Year 10 -R 207 679 -R 147 484 -R 119 327 52.27 %     
 

 

Farm 3 Financial Indicators 

 

Table 10 Financial Indicators of Farm 3 

  NPAT net cash flow NPV 
profitability 
index 

regular 
payback 
period 

disc. 
payback 
period 

Year 0   -R 250 000 -R 250 000       

Year 1 -R 82 408 -R 49 491 -R 297 688 -19.08 %     

Year 2 -R 28 032 R 7 189 -R 291 478 -16.59 %     

Year 3 -R 1 046 R 36 747 -R 262 870 -5.15 %     

Year 4 -R 34 152 R 6 180 -R 258 971 -3.59 %     

Year 5 -R 87 487 -R 44 332 -R 288 940 -15.58 %     

Year 6 -R 35 957 R 10 218 -R 283 514 -13.41 %     

Year 7 -R 48 444 R 1 104 -R 283 167 -13.27 %     

Year 8 -R 77 491 -R 24 615 -R 295 532 -18.21 %     

Year 9 -R 29 654 R 26 923 -R 283 620 -13.45 %     

Year 
10 -R 221 899 -R 161 704 -R 351 783 -40.71 %     
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Farm 4 Financial Indicators 

 

Table 11 Financial Indicators of Farm 4 

  NPAT 
net cash 
flow NPV 

profitability 
index 

regular 
payback 
period 

disc. 
payback 
period 

Year 0   -R 200 000 -R 200 000       

Year 1 -R 43 742 -R 17 409 -R 216 959 -8.48 %     

Year 2 -R 17 690 R 10 487 -R 207 758 -3.88 %     

Year 3 -R 7 861 R 22 373 -R 190 025 4.99 %     

Year 4 -R 20 129 R 12 136 -R 181 247 9.38 %     

Year 5 -R 48 612 -R 14 088 -R 191 344 4.33 %     

Year 6 -R 41 050 -R 4 109 -R 194 146 2.93 %     

Year 7 -R 14 299 R 25 340 -R 180 448 9.78 %     

Year 8 -R 44 619 -R 2 318 -R 181 891 9.05 %     

Year 9 -R 18 491 R 26 771 -R 170 009 15.00 %     

Year 10 -R 156 511 -R 108 355 -R 215 888 -7.94 %     
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Appendix F – NPV’s of the case study farms with reduced capex 

  

 

Figure 67 Net present value (NPV) of farm 1 with reduced capital expenditure 

 

 

Figure 68 Net present value (NPV) of farm 2 with reduced capital expenditure 
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Figure 69 Net present value (NPV) of farm 3 with reduced capital expenditure 

 

 

Figure 70 Net present value (NPV) of farm 4 with reduced capital expenditure 
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Appendix G – VBA code used in sensitivity analysis 

 

Testing the effect of one parameter on a performance indicator 

 

The following code runs a loop where an input parameter is set to a value, and the result of 

that change on a performance indicator is written into a cell. This process is repeated for a 

predetermined number of times as the input parameter is gradually incremented from the 

starting point to the end point.  

 

Public Sub SensitivityCalc() 

 

 Dim i As Integer 

 Dim start As Double 

 Dim last As Double 

 Dim jump As Double 

 Dim steps As Double 

 Dim Parameter As Double 

  

 start = Worksheets("Inputs").Range("Start").Cells(1, 1) 

 last = Worksheets("Inputs").Range("Last").Cells(1, 1) 

 steps = Worksheets("Inputs").Range("Steps").Cells(1, 1) + 1 ' fence pole dilemma 

 Parameter = Worksheets("Inputs").Range("Parameter").Cells(1, 1) 

 jump = (last - start) / (steps) 

 

 For i = 1 To steps + 1 

            'set selected variable value 

            Worksheets("Inputs").Range("C5").Cells(Parameter, 1) = start + (i - 1) * jump 

            ' run the model, then store the values 

           Calculate 

            ' store the values 
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            Worksheets("results").Range("C3").Cells(i, 1) =   
Worksheets("inputs").Range("O99").Value 

            Worksheets("results").Range("B3").Cells(i, 1) = start + (i - 1) * jump 

        Next i 

End Sub 

 

Testing the effect of two parameters on a performance indicator 

 

The following code runs two loops where two parameters are varied simultaneously and the 

result on a performance indicator is written into a cell. The end result is a matrix of values, 

which each represent a scenario where the two parameters are set at different values. As in 

the previous code, each input parameter is gradually incremented from the starting point to 

the ending point.  

 

Public Sub SensitivityCalcTwoParameters() 

        

 Dim i As Integer 

 Dim start As Integer 

 Dim last As Integer 

 Dim jump As Long 

 Dim steps As Integer 

 Dim Parameter As Double 

  

 start = Worksheets("Inputs").Range("Start").Cells(1, 1) 

 last = Worksheets("Inputs").Range("Last").Cells(1, 1) 

 steps = Worksheets("Inputs").Range("Steps").Cells(1, 1) + 1 

 Parameter = Worksheets("Inputs").Range("Parameter").Cells(1, 1) 

   

 Dim j As Integer 

 Dim starttwo As Long 

 Dim lasttwo As Long 
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 Dim jumptwo As Long 

 Dim stepstwo As Integer 

 Dim Parametertwo As Double 

  

 starttwo = Worksheets("Inputs").Range("StartTwo").Cells(1, 1) 

 lasttwo = Worksheets("Inputs").Range("LastTwo").Cells(1, 1) 

 stepstwo = Worksheets("Inputs").Range("StepsTwo").Cells(1, 1) + 1 

 Parametertwo = Worksheets("Inputs").Range("ParameterTwo").Cells(1, 1) 

  

 jump = (last - start) / (steps) 

 jumptwo = (lasttwo - starttwo) / (stepstwo) 

  

 For i = 1 To steps + 1 

 For j = 1 To stepstwo + 1 

         'set input parameters to the test values 

            Worksheets("Inputs").Range("C5").Cells(Parameter, 1) = start + (i - 1) * jump 

            Worksheets("Inputs").Range("C5").Cells(Parametertwo, 1) = starttwo + (j - 1) *  

            jumptwo 

        ' run the model, then store the values 

        Calculate 

            'store the values into a matrix with i and j as rows and columns 

            Worksheets("results").Range("C3").Cells(i, j) =  

Worksheets("inputs").Range("O99").Value 

        Next j 

    Next i 

End Sub 

 

Variations of this code are made to allow calculations where one of the input parameters 

increases whilst the other decreases. This is needed in certain situations where the two input 

parameters must be compared in this manner. Other variations to the code include situations 

where input parameters are used that are non-integers or percentages. 


